Informer-Based Temperature Prediction Using Observed and Numerical Weather Prediction Data

均方误差 计算机科学 人工神经网络 杠杆(统计) 依赖关系(UML) 时间序列 数据挖掘 机器学习 人工智能 预测建模 预测技巧 统计 数学
作者
Jimin Jun,Hong Kook Kim
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (16): 7047-7047 被引量:4
标识
DOI:10.3390/s23167047
摘要

This paper proposes an Informer-based temperature prediction model to leverage data from an automatic weather station (AWS) and a local data assimilation and prediction system (LDAPS), where the Informer as a variant of a Transformer was developed to better deal with time series data. Recently, deep-learning-based temperature prediction models have been proposed, demonstrating successful performances, such as conventional neural network (CNN)-based models, bi-directional long short-term memory (BLSTM)-based models, and a combination of both neural networks, CNN–BLSTM. However, these models have encountered issues due to the lack of time data integration during the training phase, which also lead to the persistence of a long-term dependency problem in the LSTM models. These limitations have culminated in a performance deterioration when the prediction time length was extended. To overcome these issues, the proposed model first incorporates time-periodic information into the learning process by generating time-periodic information and inputting it into the model. Second, the proposed model replaces the LSTM with an Informer as an alternative to mitigating the long-term dependency problem. Third, a series of fusion operations between AWS and LDAPS data are executed to examine the effect of each dataset on the temperature prediction performance. The performance of the proposed temperature prediction model is evaluated via objective measures, including the root-mean-square error (RMSE) and mean absolute error (MAE) over different timeframes, ranging from 6 to 336 h. The experiments showed that the proposed model relatively reduced the average RMSE and MAE by 0.25 °C and 0.203 °C, respectively, compared with the results of the CNN–BLSTM-based model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
harri发布了新的文献求助10
刚刚
3秒前
3秒前
4秒前
曹great完成签到,获得积分10
5秒前
5秒前
彭于晏应助yao采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
瓜瓜完成签到,获得积分10
6秒前
Billy应助泡芙采纳,获得30
6秒前
6秒前
科研通AI2S应助星星掉沟了采纳,获得10
8秒前
cbb发布了新的文献求助10
9秒前
idemipere发布了新的文献求助10
9秒前
独特冷荷给独特冷荷的求助进行了留言
10秒前
10秒前
11秒前
思源应助奇异物质采纳,获得10
11秒前
FashionBoy应助药化行者采纳,获得10
11秒前
慧灰huihui发布了新的文献求助10
12秒前
12秒前
王相博完成签到,获得积分10
13秒前
充电宝应助土豪的雪巧采纳,获得10
14秒前
14秒前
Alan发布了新的文献求助10
15秒前
15秒前
yznfly应助认真哈密瓜采纳,获得30
16秒前
yznfly应助认真哈密瓜采纳,获得30
16秒前
王志霞发布了新的文献求助10
17秒前
17秒前
18秒前
安静的雨完成签到,获得积分10
18秒前
shiyuhangsyh发布了新的文献求助10
20秒前
易酰水烊酸完成签到,获得积分10
20秒前
刘科发布了新的文献求助10
21秒前
万能图书馆应助幽默白易采纳,获得10
21秒前
HHHSean完成签到,获得积分10
21秒前
CR7应助Foldog采纳,获得20
21秒前
Yuri发布了新的文献求助10
22秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794