Informer-Based Temperature Prediction Using Observed and Numerical Weather Prediction Data

均方误差 计算机科学 人工神经网络 杠杆(统计) 依赖关系(UML) 时间序列 数据挖掘 机器学习 人工智能 预测建模 预测技巧 统计 数学
作者
Jimin Jun,Hong Kook Kim
出处
期刊:Sensors [MDPI AG]
卷期号:23 (16): 7047-7047 被引量:4
标识
DOI:10.3390/s23167047
摘要

This paper proposes an Informer-based temperature prediction model to leverage data from an automatic weather station (AWS) and a local data assimilation and prediction system (LDAPS), where the Informer as a variant of a Transformer was developed to better deal with time series data. Recently, deep-learning-based temperature prediction models have been proposed, demonstrating successful performances, such as conventional neural network (CNN)-based models, bi-directional long short-term memory (BLSTM)-based models, and a combination of both neural networks, CNN–BLSTM. However, these models have encountered issues due to the lack of time data integration during the training phase, which also lead to the persistence of a long-term dependency problem in the LSTM models. These limitations have culminated in a performance deterioration when the prediction time length was extended. To overcome these issues, the proposed model first incorporates time-periodic information into the learning process by generating time-periodic information and inputting it into the model. Second, the proposed model replaces the LSTM with an Informer as an alternative to mitigating the long-term dependency problem. Third, a series of fusion operations between AWS and LDAPS data are executed to examine the effect of each dataset on the temperature prediction performance. The performance of the proposed temperature prediction model is evaluated via objective measures, including the root-mean-square error (RMSE) and mean absolute error (MAE) over different timeframes, ranging from 6 to 336 h. The experiments showed that the proposed model relatively reduced the average RMSE and MAE by 0.25 °C and 0.203 °C, respectively, compared with the results of the CNN–BLSTM-based model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力山蝶应助小白采纳,获得10
3秒前
xg完成签到,获得积分10
3秒前
Zezezee发布了新的文献求助10
3秒前
笑点低可乐完成签到,获得积分10
4秒前
4秒前
坚强的樱发布了新的文献求助10
4秒前
4秒前
求解限发布了新的文献求助160
4秒前
5秒前
白宝宝北北白应助XIN采纳,获得10
5秒前
wenjian发布了新的文献求助10
5秒前
6秒前
华仔应助jy采纳,获得10
6秒前
hoongyan完成签到 ,获得积分10
6秒前
Ava应助aoxiangcaizi12采纳,获得10
8秒前
Amai完成签到,获得积分10
8秒前
9秒前
九川发布了新的文献求助10
10秒前
风的季节发布了新的文献求助10
10秒前
可耐的乐荷完成签到,获得积分10
11秒前
WEILAI完成签到,获得积分10
11秒前
my发布了新的文献求助10
11秒前
wenjian完成签到,获得积分10
12秒前
12秒前
Accept2024完成签到,获得积分10
13秒前
万能图书馆应助笑笑采纳,获得10
13秒前
伊丽莎白居易完成签到,获得积分10
14秒前
鳗鱼静珊发布了新的文献求助10
14秒前
yuyiyi完成签到,获得积分10
15秒前
无花果应助胖豆采纳,获得10
16秒前
通~发布了新的文献求助10
16秒前
cc发布了新的文献求助10
17秒前
18秒前
MILL发布了新的文献求助10
18秒前
月光入梦完成签到 ,获得积分10
19秒前
HC完成签到,获得积分10
20秒前
琪琪发布了新的文献求助10
20秒前
21秒前
淡定的思松应助风的季节采纳,获得10
22秒前
所所应助mm采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794