Informer-Based Temperature Prediction Using Observed and Numerical Weather Prediction Data

均方误差 计算机科学 人工神经网络 杠杆(统计) 依赖关系(UML) 时间序列 数据挖掘 机器学习 人工智能 预测建模 预测技巧 统计 数学
作者
Jimin Jun,Hong Kook Kim
出处
期刊:Sensors [MDPI AG]
卷期号:23 (16): 7047-7047 被引量:4
标识
DOI:10.3390/s23167047
摘要

This paper proposes an Informer-based temperature prediction model to leverage data from an automatic weather station (AWS) and a local data assimilation and prediction system (LDAPS), where the Informer as a variant of a Transformer was developed to better deal with time series data. Recently, deep-learning-based temperature prediction models have been proposed, demonstrating successful performances, such as conventional neural network (CNN)-based models, bi-directional long short-term memory (BLSTM)-based models, and a combination of both neural networks, CNN–BLSTM. However, these models have encountered issues due to the lack of time data integration during the training phase, which also lead to the persistence of a long-term dependency problem in the LSTM models. These limitations have culminated in a performance deterioration when the prediction time length was extended. To overcome these issues, the proposed model first incorporates time-periodic information into the learning process by generating time-periodic information and inputting it into the model. Second, the proposed model replaces the LSTM with an Informer as an alternative to mitigating the long-term dependency problem. Third, a series of fusion operations between AWS and LDAPS data are executed to examine the effect of each dataset on the temperature prediction performance. The performance of the proposed temperature prediction model is evaluated via objective measures, including the root-mean-square error (RMSE) and mean absolute error (MAE) over different timeframes, ranging from 6 to 336 h. The experiments showed that the proposed model relatively reduced the average RMSE and MAE by 0.25 °C and 0.203 °C, respectively, compared with the results of the CNN–BLSTM-based model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
磨人的老妖精完成签到,获得积分10
1秒前
火火完成签到,获得积分10
1秒前
yy完成签到,获得积分10
1秒前
pyrene完成签到 ,获得积分10
2秒前
公冶菲鹰发布了新的文献求助10
2秒前
热热完成签到,获得积分10
2秒前
zzz完成签到 ,获得积分10
2秒前
Jared应助黎黎采纳,获得10
3秒前
3秒前
3秒前
斯文败类应助XXXXX采纳,获得10
3秒前
阿芜完成签到,获得积分10
4秒前
LV发布了新的文献求助10
4秒前
qiuxiali123发布了新的文献求助10
4秒前
4秒前
CodeCraft应助miao采纳,获得10
4秒前
4秒前
LSW完成签到 ,获得积分10
5秒前
顾矜应助IF采纳,获得30
6秒前
咸鱼咸完成签到,获得积分10
6秒前
Kauio发布了新的文献求助10
6秒前
幸运鹅47完成签到,获得积分10
6秒前
orixero应助niagvbjkhsdfvc采纳,获得10
6秒前
hanyahui完成签到,获得积分10
7秒前
eliot完成签到,获得积分10
7秒前
7秒前
Zhao_Kai发布了新的文献求助10
7秒前
爆米花应助而风不止采纳,获得10
7秒前
坚强的紫菜完成签到,获得积分10
7秒前
熊风发布了新的文献求助10
8秒前
核桃完成签到,获得积分10
8秒前
see完成签到,获得积分10
8秒前
栀初完成签到,获得积分10
8秒前
LT发布了新的文献求助10
9秒前
9秒前
10秒前
热心市民余先生完成签到,获得积分10
10秒前
乐乐应助夕荀采纳,获得10
11秒前
无限小霜完成签到,获得积分10
11秒前
DreamMaker应助LV采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005