What is the Real Need for Scene Text Removal? Exploring the Background Integrity and Erasure Exhaustivity Properties

删除 计算机科学 公制(单位) 跳跃式监视 财产(哲学) 像素 理论计算机科学 人工智能 算法 程序设计语言 哲学 运营管理 认识论 经济
作者
Yuxin Wang,Hongtao Xie,Zixiao Wang,Yadong Qu,Yongdong Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 4567-4580
标识
DOI:10.1109/tip.2023.3290517
摘要

As a crucial application in privacy protection, scene text removal (STR) has received amounts of attention in recent years. However, existing approaches coarsely erasing texts from images ignore two important properties: the background texture integrity (BI) and the text erasure exhaustivity (EE). These two properties directly determine the erasure performance, and how to maintain them in a single network is the core problem for STR task. In this paper, we attribute the lack of BI and EE properties to the implicit erasure guidance and imbalanced multi-stage erasure respectively. To improve these two properties, we propose a new ProgrEssively Region-based scene Text eraser (PERT). There are three key contributions in our study. First, a novel explicit erasure guidance is proposed to enhance the BI property. Different from implicit erasure guidance modifying all the pixels in the entire image, our explicit one accurately performs stroke-level modification with only bounding-box level annotations. Second, a new balanced multi-stage erasure is constructed to improve the EE property. By balancing the learning difficulty and network structure among progressive stages, each stage takes an equal step towards the text-erased image to ensure the erasure exhaustivity. Third, we propose two new evaluation metrics called BI-metric and EE-metric, which make up the shortcomings of current evaluation tools in analyzing BI and EE properties. Compared with previous methods, PERT outperforms them by a large margin in both BI-metric ( ↑ 6.13 %) and EE-metric ( ↑ 1.9 %), obtaining SOTA results with high speed (71 FPS) and at least 25% lower parameter complexity. Code will be available at https://github.com/wangyuxin87/PERT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jzyy完成签到 ,获得积分10
3秒前
科研螺丝发布了新的文献求助10
4秒前
6秒前
香蕉觅云应助超级的雪莲采纳,获得10
6秒前
7秒前
8秒前
8秒前
路路完成签到 ,获得积分10
10秒前
11秒前
rl_soccer发布了新的文献求助10
12秒前
QSJ完成签到,获得积分10
12秒前
ivy发布了新的文献求助10
12秒前
炳灿发布了新的文献求助10
15秒前
扶风阁主发布了新的文献求助10
17秒前
Anserbe完成签到,获得积分20
20秒前
dengcl-jack完成签到,获得积分10
23秒前
bkagyin应助Minerva采纳,获得10
23秒前
23秒前
24秒前
CodeCraft应助Anserbe采纳,获得10
24秒前
26秒前
28秒前
Shuey完成签到,获得积分10
30秒前
炳灿完成签到,获得积分20
30秒前
扶风阁主完成签到,获得积分10
30秒前
兔农糖发布了新的文献求助10
30秒前
天工开物完成签到,获得积分20
31秒前
丶Dawn完成签到,获得积分10
31秒前
小鱼儿完成签到,获得积分10
31秒前
dyuephy完成签到,获得积分10
32秒前
元谷雪应助smm采纳,获得10
33秒前
34秒前
recardo完成签到,获得积分10
35秒前
kourosz发布了新的文献求助10
35秒前
37秒前
酷波er应助兔农糖采纳,获得10
37秒前
不配.应助ABC采纳,获得20
42秒前
迪迦奥特曼完成签到,获得积分10
43秒前
oiioi发布了新的文献求助10
45秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137758
求助须知:如何正确求助?哪些是违规求助? 2788672
关于积分的说明 7787968
捐赠科研通 2445026
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043