已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Experimental and numerical characterization of imperfect additively manufactured lattices based on triply periodic minimal surfaces

材料科学 小旋翼机 最小曲面 表征(材料科学) 有限元法 刚度 灵活性(工程) 过程(计算) 融合 机械工程 复合材料 结构工程 纳米技术 计算机科学 几何学 工程类 数学 语言学 统计 哲学 共聚物 操作系统 聚合物
作者
Fabian Günther,Stefan Pilz,Franz Hirsch,Markus Wagner,Markus Kästner,A. Gebert,Martina Zimmermann
出处
期刊:Materials & Design [Elsevier]
卷期号:: 112197-112197
标识
DOI:10.1016/j.matdes.2023.112197
摘要

Lattices based on triply periodic minimal surfaces (TPMS) are attracting increasing interest in seminal industries such as bone tissue engineering due to their excellent structure-property relationships. However, the potential can only be exploited if their structural integrity is ensured. This requires a fundamental understanding of the impact of imperfections that arise during additive manufacturing. Therefore, in the present study, the structure-property relationships of eight TPMS lattices, including their imperfections, are investigated experimentally and numerically. In particular, the focus is on biomimetic network TPMS lattices of the type Schoen I-WP and Gyroid, which are fabricated by laser powder bed fusion from the biocompatible alloy Ti-42Nb. The experimental studies include computed tomography measurements and compression tests. The results highlight the importance of process-related imperfections on the mechanical performance of TPMS lattices. In the numerical work, firstly the as-built morphology is artificially reconstructed before finite element analyses are performed. Here, the reconstruction procedure previously developed by the same authors is used and validated on a larger experimental matrix before more advanced calculations are conducted. Specifically, the reconstruction reduces the numerical overestimation of stiffness from up to 341% to a maximum of 26% and that of yield strength from 66% to 12%. Given a high simulation accuracy and flexibility, the presented procedure can become a key factor in the future design process of TPMS lattices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hphhh发布了新的文献求助30
1秒前
1秒前
1秒前
ccm应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得20
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
Eve发布了新的文献求助30
3秒前
wu发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
Werido完成签到 ,获得积分10
5秒前
6秒前
调研昵称发布了新的文献求助10
6秒前
寒冷的莫茗完成签到 ,获得积分10
7秒前
华仔应助欣慰薯片采纳,获得10
7秒前
隐形曼青应助shitou采纳,获得10
7秒前
9秒前
丘比特应助yyan采纳,获得10
10秒前
houfei发布了新的文献求助10
10秒前
花花发布了新的文献求助10
10秒前
纯真的鞋子完成签到,获得积分10
11秒前
顾矜应助匆匆采纳,获得50
13秒前
13秒前
13秒前
稿子哥发布了新的文献求助10
15秒前
orixero应助掌柜采纳,获得10
15秒前
小晨要发papper完成签到,获得积分10
16秒前
德玛西亚完成签到,获得积分10
16秒前
17秒前
zz发布了新的文献求助10
18秒前
borkyy关注了科研通微信公众号
19秒前
巫凝天发布了新的文献求助200
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146409
求助须知:如何正确求助?哪些是违规求助? 2797811
关于积分的说明 7825638
捐赠科研通 2454147
什么是DOI,文献DOI怎么找? 1306157
科研通“疑难数据库(出版商)”最低求助积分说明 627642
版权声明 601503