清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Radiomics feature analysis and model research for predicting histopathological subtypes of non‐small cell lung cancer on CT images: A multi‐dataset study

无线电技术 人工智能 医学影像学 特征(语言学) 计算机科学 肺癌 计算机断层摄影术 放射科 医学物理学 癌症 医学 病理 内科学 哲学 语言学
作者
Fan Song,Xiao Song,Youdan Feng,Guangda Fan,Yangyang Sun,Peng Zhang,Jinkai Li,Fei Liu,Guanglei Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4351-4365 被引量:12
标识
DOI:10.1002/mp.16233
摘要

Classifying the subtypes of non-small cell lung cancer (NSCLC) is essential for clinically adopting optimal treatment strategies and improving clinical outcomes, but the histological subtypes are confirmed by invasive biopsy or post-operative examination at present. Based on multi-center data, this study aimed to analyze the importance of extracted CT radiomics features and develop the model with good generalization performance for precisely distinguishing major NSCLC subtypes: adenocarcinoma (ADC) and squamous cell carcinoma (SCC).We collected a multi-center CT dataset with 868 patients from eight international databases on the cancer imaging archive (TCIA). Among them, patients from five databases were mixed and split to training and test sets (560:140). The remaining three databases were used as independent test sets: TCGA set (n = 97) and lung3 set (n = 71). A total of 1409 features containing shape, intensity, and texture information were extracted from tumor volume of interest (VOI), then the ℓ2,1 -norm minimization was used for feature selection and the importance of selected features was analyzed. Next, the prediction and generalization performance of 130 radiomics models (10 common algorithms and 120 heterogeneous ensemble combinations) were compared by the average AUC value on three test sets. Finally, predictive results of the optimal model were shown.After feature selection, 401 features were obtained. Features of intensity, texture GLCM, GLRLM, and GLSZM had higher classification weight coefficients than other features (shape, texture GLDM, and NGTDM), and the filtered image features exhibited significant importance than original image features (p-value = 0.0210). Moreover, five ensemble learning algorithms (Bagging, AdaBoost, RF, XGBoost, GBDT) had better generalization performance (p-value = 0.00418) than other non-ensemble algorithms (MLP, LR, GNB, SVM, KNN). The Bagging-AdaBoost-SVM model had the highest AUC value (0.815 ± 0.010) on three test sets. It obtained AUC values of 0.819, 0.823, and 0.804 on test set, TCGA set and lung3 set, respectively.Our multi-dataset study showed that intensity features, texture features (GLCM, GLRLM, and GLSZM) and filtered image features were more important for distinguishing ADCs from SCCs. The method of ensemble learning can improve the prediction and generalization performance on the complicated multi-center data. The Bagging-AdaBoost-SVM model had the strongest generalization performance, and it showed promising clinical value for non-invasively predicting the histopathological subtypes of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
lengel发布了新的文献求助10
1分钟前
lengel完成签到,获得积分10
1分钟前
小怪完成签到,获得积分10
2分钟前
zwy109完成签到 ,获得积分10
2分钟前
骆凤灵完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
CC完成签到,获得积分10
3分钟前
pass完成签到 ,获得积分10
3分钟前
曙光完成签到,获得积分10
4分钟前
CipherSage应助uro-wu采纳,获得10
5分钟前
5分钟前
uro-wu发布了新的文献求助10
5分钟前
小二郎应助ldy539采纳,获得10
5分钟前
小脚丫完成签到 ,获得积分10
6分钟前
6分钟前
ldy539发布了新的文献求助10
6分钟前
丘比特应助科研通管家采纳,获得10
7分钟前
实力不允许完成签到 ,获得积分10
7分钟前
传奇3应助璀璨的饺子采纳,获得10
7分钟前
7分钟前
8分钟前
8分钟前
NN完成签到 ,获得积分10
8分钟前
史前巨怪完成签到,获得积分10
8分钟前
科目三应助科研通管家采纳,获得10
9分钟前
uro-wu完成签到,获得积分10
9分钟前
宇文非笑完成签到 ,获得积分10
10分钟前
李爱国应助璀璨的饺子采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
SciGPT应助科研通管家采纳,获得10
11分钟前
11分钟前
11分钟前
11分钟前
研友_nEWRJ8发布了新的文献求助10
11分钟前
茶茶完成签到,获得积分10
11分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422896
求助须知:如何正确求助?哪些是违规求助? 3023268
关于积分的说明 8903959
捐赠科研通 2710724
什么是DOI,文献DOI怎么找? 1486669
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682341