Radiomics feature analysis and model research for predicting histopathological subtypes of non‐small cell lung cancer on CT images: A multi‐dataset study

无线电技术 人工智能 医学影像学 特征(语言学) 计算机科学 肺癌 计算机断层摄影术 放射科 医学物理学 癌症 医学 病理 内科学 哲学 语言学
作者
Fan Song,Xiao Song,Youdan Feng,Guangda Fan,Yangyang Sun,Peng Zhang,Jinkai Li,Fei Liu,Guanglei Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4351-4365 被引量:17
标识
DOI:10.1002/mp.16233
摘要

Classifying the subtypes of non-small cell lung cancer (NSCLC) is essential for clinically adopting optimal treatment strategies and improving clinical outcomes, but the histological subtypes are confirmed by invasive biopsy or post-operative examination at present. Based on multi-center data, this study aimed to analyze the importance of extracted CT radiomics features and develop the model with good generalization performance for precisely distinguishing major NSCLC subtypes: adenocarcinoma (ADC) and squamous cell carcinoma (SCC).We collected a multi-center CT dataset with 868 patients from eight international databases on the cancer imaging archive (TCIA). Among them, patients from five databases were mixed and split to training and test sets (560:140). The remaining three databases were used as independent test sets: TCGA set (n = 97) and lung3 set (n = 71). A total of 1409 features containing shape, intensity, and texture information were extracted from tumor volume of interest (VOI), then the ℓ2,1 -norm minimization was used for feature selection and the importance of selected features was analyzed. Next, the prediction and generalization performance of 130 radiomics models (10 common algorithms and 120 heterogeneous ensemble combinations) were compared by the average AUC value on three test sets. Finally, predictive results of the optimal model were shown.After feature selection, 401 features were obtained. Features of intensity, texture GLCM, GLRLM, and GLSZM had higher classification weight coefficients than other features (shape, texture GLDM, and NGTDM), and the filtered image features exhibited significant importance than original image features (p-value = 0.0210). Moreover, five ensemble learning algorithms (Bagging, AdaBoost, RF, XGBoost, GBDT) had better generalization performance (p-value = 0.00418) than other non-ensemble algorithms (MLP, LR, GNB, SVM, KNN). The Bagging-AdaBoost-SVM model had the highest AUC value (0.815 ± 0.010) on three test sets. It obtained AUC values of 0.819, 0.823, and 0.804 on test set, TCGA set and lung3 set, respectively.Our multi-dataset study showed that intensity features, texture features (GLCM, GLRLM, and GLSZM) and filtered image features were more important for distinguishing ADCs from SCCs. The method of ensemble learning can improve the prediction and generalization performance on the complicated multi-center data. The Bagging-AdaBoost-SVM model had the strongest generalization performance, and it showed promising clinical value for non-invasively predicting the histopathological subtypes of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林炎完成签到,获得积分10
刚刚
安详可燕发布了新的文献求助10
刚刚
zzt关闭了zzt文献求助
刚刚
十亿少女的梦完成签到,获得积分10
刚刚
cyz完成签到,获得积分10
1秒前
1秒前
qiyixuan发布了新的文献求助10
2秒前
小宝完成签到,获得积分10
2秒前
3秒前
小蘑菇应助chen采纳,获得10
3秒前
Adler发布了新的文献求助10
3秒前
seata发布了新的文献求助10
3秒前
ZhiyunXu2012完成签到 ,获得积分10
4秒前
Zyer完成签到,获得积分10
4秒前
5秒前
6秒前
shisui发布了新的文献求助20
7秒前
忧虑的电话完成签到,获得积分10
7秒前
月亮完成签到,获得积分20
8秒前
张今天也要做科研呀完成签到,获得积分10
9秒前
GH完成签到,获得积分10
9秒前
9秒前
崔win完成签到,获得积分10
10秒前
lin发布了新的文献求助10
10秒前
艾迪富富完成签到,获得积分10
10秒前
羔羊发布了新的文献求助10
11秒前
科研顺利完成签到,获得积分10
11秒前
李燊发布了新的文献求助10
11秒前
清爽幻竹发布了新的文献求助10
12秒前
打打应助传统的松鼠采纳,获得10
12秒前
vv发布了新的文献求助10
12秒前
彭于晏应助回乐采纳,获得10
13秒前
JamesPei应助DQ采纳,获得10
14秒前
落后的嚓茶完成签到 ,获得积分10
14秒前
Hana完成签到,获得积分10
14秒前
骑驴找马发布了新的文献求助10
15秒前
15秒前
徐徐完成签到,获得积分10
15秒前
所所应助1147468624采纳,获得10
16秒前
风趣的洙完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139