亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and evaluation of machine learning models and nomogram for the prediction of severe acute pancreatitis

列线图 医学 急性胰腺炎 接收机工作特性 队列 曲线下面积 回顾性队列研究 胰腺炎 曲线下面积 试验预测值 机器学习 内科学 人工智能 计算机科学 药代动力学
作者
Zhu Luo,Jialin Shi,Yangyang Fang,Shunjie Pei,Yutian Lu,Ru‐Xia Zhang,Xin Ye,Wenxing Wang,Mengtian Li,Xiangjun Li,Mengyue Zhang,Guangxin Xiang,Zhifang Pan,Xiaoqun Zheng
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:38 (3): 468-475 被引量:7
标识
DOI:10.1111/jgh.16125
摘要

Severe acute pancreatitis (SAP) in patients progresses rapidly and can cause multiple organ failures associated with high mortality. We aimed to train a machine learning (ML) model and establish a nomogram that could identify SAP, early in the course of acute pancreatitis (AP).In this retrospective study, 631 patients with AP were enrolled in the training cohort. For predicting SAP early, five supervised ML models were employed, such as random forest (RF), K-nearest neighbors (KNN), and naive Bayes (NB), which were evaluated by accuracy (ACC) and the areas under the receiver operating characteristic curve (AUC). The nomogram was established, and the predictive ability was assessed by the calibration curve and AUC. They were externally validated by an independent cohort of 109 patients with AP.In the training cohort, the AUC of RF, KNN, and NB models were 0.969, 0.954, and 0.951, respectively, while the AUC of the Bedside Index for Severity in Acute Pancreatitis (BISAP), Ranson and Glasgow scores were only 0.796, 0.847, and 0.837, respectively. In the validation cohort, the RF model also showed the highest AUC, which was 0.961. The AUC for the nomogram was 0.888 and 0.955 in the training and validation cohort, respectively.Our findings suggested that the RF model exhibited the best predictive performance, and the nomogram provided a visual scoring model for clinical practice. Our models may serve as practical tools for facilitating personalized treatment options and improving clinical outcomes through pre-treatment stratification of patients with AP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷愚志完成签到,获得积分10
25秒前
小洁完成签到 ,获得积分10
30秒前
严珍珍完成签到 ,获得积分10
36秒前
野生菜狗发布了新的文献求助10
39秒前
墨言无殇完成签到 ,获得积分10
41秒前
tszjw168完成签到 ,获得积分10
55秒前
1分钟前
辛一完成签到,获得积分10
1分钟前
Ji完成签到,获得积分10
1分钟前
辛一发布了新的文献求助10
1分钟前
cc完成签到,获得积分10
1分钟前
1分钟前
骀荡发布了新的文献求助20
1分钟前
1分钟前
Lorin完成签到 ,获得积分10
1分钟前
Juan_He发布了新的文献求助10
1分钟前
2分钟前
松鼠一只发布了新的文献求助10
2分钟前
wodetaiyangLLL完成签到 ,获得积分10
2分钟前
社会主义接班人完成签到 ,获得积分10
2分钟前
Orange应助骀荡采纳,获得10
2分钟前
今后应助野生菜狗采纳,获得10
3分钟前
mirrovo完成签到 ,获得积分10
3分钟前
帅气的秘密完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
超帅无血完成签到,获得积分10
3分钟前
野生菜狗发布了新的文献求助10
3分钟前
orixero应助墨倾池采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
墨倾池发布了新的文献求助10
4分钟前
4分钟前
李洁发布了新的文献求助10
4分钟前
Akim应助Dailei采纳,获得10
4分钟前
研友_892kOL完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372856
求助须知:如何正确求助?哪些是违规求助? 2990391
关于积分的说明 8740961
捐赠科研通 2674069
什么是DOI,文献DOI怎么找? 1464838
科研通“疑难数据库(出版商)”最低求助积分说明 677681
邀请新用户注册赠送积分活动 669082