Accelerated Discovery of Novel Garnet-Type Solid-State Electrolyte Candidates via Machine Learning

材料科学 离子电导率 四方晶系 离子键合 电解质 快离子导体 从头算 锂(药物) 机器学习 纳米技术 计算机科学 相(物质) 离子 人工智能 物理化学 医学 物理 内分泌学 量子力学 有机化学 化学 电极
作者
Jiwon Sun,Seungpyo Kang,Joonchul Kim,Kyoungmin Min
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (4): 5049-5057 被引量:31
标识
DOI:10.1021/acsami.2c15980
摘要

All-solid-state batteries (ASSBs) have attracted considerable attention because of their higher energy density and stability than conventional lithium-ion batteries (LIBs). For the development of promising ASSBs, solid-state electrolytes (SSEs) are essential to achieve structural integrity. Thus, in this study, a machine-learning-based surrogate model was developed to search for ideal garnet-type SSE candidates. The well-known Li7La3Zr2O12 structure was used as a base material, and 73 chemical elements were substituted on La and Zr sites, leading to 5329 potential structures. First, the elasticity database and machine learning descriptors were adopted from previous studies. Subsequently, the machine-learning-based surrogate model was applied to predict the elastic properties of potential SSE materials, followed by first-principles calculations for validation. Furthermore, the active learning process demonstrated that it can effectively decrease prediction uncertainty. Finally, the ionic conductivity of the mechanically superior materials was predicted to suggest optimal SSE candidates. Then, ab initio molecular dynamics simulations are followed for confirmation of diffusion behavior for materials classified as superionic; 10 new tetragonal-phase garnet SSEs are verified with superior mechanical and ionic conductivity properties. We believe that the current model and the constructed database will become a cornerstone for the development of next-generation SSE materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的半凡应助饱满服饰采纳,获得10
1秒前
平常的半凡应助饱满服饰采纳,获得10
1秒前
平常的半凡应助饱满服饰采纳,获得10
1秒前
平常的半凡应助饱满服饰采纳,获得10
1秒前
只是网名百科完成签到,获得积分10
1秒前
莉莉完成签到,获得积分10
1秒前
清河剑客发布了新的文献求助10
3秒前
白兔发布了新的文献求助10
3秒前
雨下整夜完成签到,获得积分10
4秒前
王某某发布了新的文献求助10
4秒前
yc完成签到 ,获得积分10
5秒前
端庄的冰枫完成签到,获得积分10
6秒前
李健的粉丝团团长应助kai采纳,获得10
7秒前
张文杰发布了新的文献求助10
7秒前
8秒前
彭于晏应助积极的怜南采纳,获得10
8秒前
王伟涛完成签到,获得积分10
9秒前
浮游应助莉莉采纳,获得10
9秒前
上弦月完成签到,获得积分10
9秒前
10秒前
10秒前
小二郎应助无心的安青采纳,获得10
10秒前
贪玩钢铁侠完成签到,获得积分10
11秒前
11秒前
bybyby完成签到,获得积分10
11秒前
12秒前
sailingluwl完成签到,获得积分10
13秒前
一叶知秋应助luoqin采纳,获得20
13秒前
ajiduo发布了新的文献求助10
16秒前
悦悦发布了新的文献求助30
16秒前
盐鸠牲完成签到 ,获得积分10
16秒前
Jasmine发布了新的文献求助10
17秒前
彭淑完成签到,获得积分10
18秒前
18秒前
18秒前
田様应助齐羽采纳,获得10
18秒前
小黎完成签到,获得积分10
18秒前
19秒前
19秒前
AOPs完成签到,获得积分0
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360565
求助须知:如何正确求助?哪些是违规求助? 4491182
关于积分的说明 13981625
捐赠科研通 4393796
什么是DOI,文献DOI怎么找? 2413638
邀请新用户注册赠送积分活动 1406466
关于科研通互助平台的介绍 1380932