Accelerated Discovery of Novel Garnet-Type Solid-State Electrolyte Candidates via Machine Learning

材料科学 离子电导率 四方晶系 离子键合 电解质 快离子导体 从头算 锂(药物) 机器学习 纳米技术 计算机科学 相(物质) 离子 人工智能 物理化学 化学 电极 医学 物理 有机化学 量子力学 内分泌学
作者
Jiwon Sun,Seungpyo Kang,Joonchul Kim,Kyoungmin Min
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (4): 5049-5057 被引量:21
标识
DOI:10.1021/acsami.2c15980
摘要

All-solid-state batteries (ASSBs) have attracted considerable attention because of their higher energy density and stability than conventional lithium-ion batteries (LIBs). For the development of promising ASSBs, solid-state electrolytes (SSEs) are essential to achieve structural integrity. Thus, in this study, a machine-learning-based surrogate model was developed to search for ideal garnet-type SSE candidates. The well-known Li7La3Zr2O12 structure was used as a base material, and 73 chemical elements were substituted on La and Zr sites, leading to 5329 potential structures. First, the elasticity database and machine learning descriptors were adopted from previous studies. Subsequently, the machine-learning-based surrogate model was applied to predict the elastic properties of potential SSE materials, followed by first-principles calculations for validation. Furthermore, the active learning process demonstrated that it can effectively decrease prediction uncertainty. Finally, the ionic conductivity of the mechanically superior materials was predicted to suggest optimal SSE candidates. Then, ab initio molecular dynamics simulations are followed for confirmation of diffusion behavior for materials classified as superionic; 10 new tetragonal-phase garnet SSEs are verified with superior mechanical and ionic conductivity properties. We believe that the current model and the constructed database will become a cornerstone for the development of next-generation SSE materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LLC发布了新的文献求助10
2秒前
2秒前
2秒前
谷小直完成签到,获得积分10
2秒前
3秒前
呆萌的雁荷完成签到,获得积分10
3秒前
小二郎应助章鱼哥想毕业采纳,获得30
4秒前
乐乐应助心心采纳,获得10
4秒前
7秒前
Lucas应助徐妙菱采纳,获得10
8秒前
学呀学发布了新的文献求助10
8秒前
涵de暴躁小地雷完成签到,获得积分10
9秒前
英俊的铭应助科研狗采纳,获得10
9秒前
LLC完成签到,获得积分10
9秒前
11秒前
豆⑧完成签到,获得积分10
12秒前
13秒前
shyotion发布了新的文献求助10
15秒前
Ensh完成签到,获得积分10
15秒前
15秒前
17秒前
hao123发布了新的文献求助10
17秒前
大个应助学呀学采纳,获得10
18秒前
传奇3应助仙人彩云里采纳,获得10
18秒前
Ava应助zhouleiwang采纳,获得10
19秒前
19秒前
壮观的晓露完成签到,获得积分10
19秒前
20秒前
21秒前
wch071完成签到,获得积分10
23秒前
24秒前
科研通AI5应助Cookies采纳,获得10
25秒前
搜集达人应助欧耶采纳,获得10
26秒前
26秒前
30秒前
乐乐应助liuyuh采纳,获得10
32秒前
Ch完成签到 ,获得积分10
33秒前
33秒前
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736089
求助须知:如何正确求助?哪些是违规求助? 3279799
关于积分的说明 10017271
捐赠科研通 2996510
什么是DOI,文献DOI怎么找? 1644102
邀请新用户注册赠送积分活动 781759
科研通“疑难数据库(出版商)”最低求助积分说明 749462