纳米技术
光热治疗
纳米医学
纳米材料
量子点
材料科学
石墨烯
光动力疗法
石墨烯量子点
碳量子点
纳米点
纳米颗粒
化学
有机化学
作者
Karina J. Lagos,David García,Coralía Fabiola Cuadrado,Larissa Marila de Souza,Natasha Ferreira Mezzacappo,Ana Paula da Silva,Natália Mayumi Inada,Vanderlei Salvador Bagnato,María Paulina Romero
摘要
Abstract Carbon dots (CDs) correspond to carbon‐based materials (CBM) with sizes usually below 10 nm. These nanomaterials exhibit attractive properties such us low toxicity, good stability, and high conductivity, which have promoted their thorough study over the past two decades. The current review describes four types of CDs: carbon quantum dots (CQDs), graphene quantum dots (GQDs), carbon nanodots (CNDs), and carbonized polymers dots (CPDs), together with the state of the art of the main routes for their preparation, either by “top‐down” or “bottom‐up” approaches. Moreover, among the various usages of CDs within biomedicine, we have focused on their application as a novel class of broad‐spectrum antibacterial agents, concretely, owing their photoactivation capability that triggers an enhanced antibacterial property. Our work presents the recent advances in this field addressing CDs, their composites and hybrids, applied as photosensitizers (PS), and photothermal agents (PA) within antibacterial strategies such as photodynamic therapy (PDT), photothermal therapy (PTT), and synchronic PDT/PTT. Furthermore, we discuss the prospects for the possible future development of large‐scale preparation of CDs, and the potential for these nanomaterials to be employed in applications to combat other pathogens harmful to human health. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease
科研通智能强力驱动
Strongly Powered by AbleSci AI