Leveraging artificial intelligence and decision support systems in hospital-acquired pressure injuries prediction: A comprehensive review

健康档案 决策支持系统 临床决策支持系统 计算机科学 系统回顾 预测建模 梅德林 医疗保健 风险评估 人工智能 数据科学 机器学习 经济 法学 经济增长 计算机安全 政治学
作者
Khaled M. Toffaha,Mecit Can Emre Simsekler,Mohammed Omar
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:141: 102560-102560 被引量:13
标识
DOI:10.1016/j.artmed.2023.102560
摘要

Hospital-acquired pressure injuries (HAPIs) constitute a significant challenge harming thousands of people worldwide yearly. While various tools and methods are used to identify pressure injuries, artificial intelligence (AI) and decision support systems (DSS) can help to reduce HAPIs risks by proactively identifying patients at risk and preventing them before harming patients.This paper comprehensively reviews AI and DSS applications for HAPIs prediction using Electronic Health Records (EHR), including a systematic literature review and bibliometric analysis.A systematic literature review was conducted through PRISMA and bibliometric analysis. In February 2023, the search was performed using four electronic databases: SCOPIS, PubMed, EBSCO, and PMCID. Articles on using AI and DSS in the management of PIs were included.The search approach yielded 319 articles, 39 of which have been included and classified into 27 AI-related and 12 DSS-related categories. The years of publication varied from 2006 to 2023, with 40% of the studies taking place in the US. Most studies focused on using AI algorithms or DSS for HAPIs prediction in inpatient units using various types of data such as electronic health records, PI assessment scales, and expert knowledge-based and environmental data to identify the risk factors associated with HAPIs development.There is insufficient evidence in the existing literature concerning the real impact of AI or DSS on making decisions for HAPIs treatment or prevention. Most studies reviewed are solely hypothetical and retrospective prediction models, with no actual application in healthcare settings. The accuracy rates, prediction results, and intervention procedures suggested based on the prediction, on the other hand, should inspire researchers to combine both approaches with larger-scale data to bring a new venue for HAPIs prevention and to investigate and adopt the suggested solutions to the existing gaps in AI and DSS prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云边小卖部完成签到,获得积分10
1秒前
1秒前
1秒前
冯11发布了新的文献求助30
2秒前
dingxiaosong完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
哎嘿应助Sene采纳,获得10
4秒前
kennynuaa发布了新的文献求助10
4秒前
Summer应助豪豪采纳,获得20
4秒前
暮白发布了新的文献求助10
4秒前
5秒前
5秒前
taopp驳回了wanci应助
6秒前
在水一方应助顾长生采纳,获得10
6秒前
手扶清风发布了新的文献求助10
6秒前
6秒前
爆米花应助热心芹菜采纳,获得10
6秒前
踏实的雨灵完成签到,获得积分10
6秒前
pfffff完成签到,获得积分10
6秒前
楠瓜发布了新的文献求助10
6秒前
huangl发布了新的文献求助100
7秒前
7秒前
Orange应助YY采纳,获得10
7秒前
鲤鱼宛凝完成签到,获得积分10
8秒前
坦率的友灵完成签到,获得积分10
8秒前
111发布了新的文献求助10
9秒前
Ava应助yyyyyqy采纳,获得10
9秒前
9秒前
10秒前
10秒前
ding应助呆萌滑板采纳,获得10
10秒前
淡淡的若冰应助hihi采纳,获得50
10秒前
达不溜踢踢完成签到 ,获得积分10
11秒前
Kumiko完成签到,获得积分10
11秒前
多多少少忖测的情完成签到,获得积分10
11秒前
FashionBoy应助Sunshine采纳,获得10
12秒前
共享精神应助Vincent采纳,获得10
12秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151195
求助须知:如何正确求助?哪些是违规求助? 2802651
关于积分的说明 7849434
捐赠科研通 2460087
什么是DOI,文献DOI怎么找? 1309478
科研通“疑难数据库(出版商)”最低求助积分说明 628915
版权声明 601760