Anti-Rounding Image Steganography With Separable Fine-Tuned Network

隐写术 计算机科学 舍入 离散余弦变换 水印 稳健性(进化) 算法 隐写分析技术 信息隐藏 人工智能 嵌入 图像(数学) 生物化学 基因 操作系统 化学
作者
Yin Xiao,Shaowu Wu,Ke Wang,Wei Lu,Yicong Zhou,Jiwu Huang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 7066-7079 被引量:1
标识
DOI:10.1109/tcsvt.2023.3269468
摘要

Image steganographic methods based on encoder-decoder model with end-to-end network architecture recently have been proposed. However, in steganographic applications, the feature map (called stego matrix) generated by the encoder needs to be rounded as a real stego image for the receiver. The loss of precision by rounding stego matrix leads to the decline in the accuracy of extracted secret messages. The challenge of using end-to-end network to preserve robustness against rounding operation is that it is non-differentiable. In this paper, we propose an anti-rounding image steganography method with separable fine-tuning network architecture which includes the joint training stage (JT-stage) and the separable fine-tuning stage (SF-stage). Firstly, in JT-stage, an embedded generator and a stego matrix extractor are jointly learned without rounding operation. Utilizing concatenation in embedded generator can realistically fuse cover image and secret messages. And the multi-scale fusion block and residual dense block in stego matrix extractor can make secret messages more correctly decoded. Moreover, the discriminator is constructed by generative adversarial nets (GAN) in JT-stage to effectively improve the authenticity and steganalysis security. Then, in SF-stage, the embedded generator is frozen, and the stego matrix is obtained and rounded as a stego image. A stego image extractor is constructed by fine-tuning the layers of the stego matrix extractor to improve the accuracy of message extraction. As the loss will not backpropagate in the embedded generator, the non-differentiability of rounding operation can be offset. Experiments show that the proposed separation fine-tuning network is robust to rounding operation, and effectively reduces the degradation of the image quality and steganalysis performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyanniniz完成签到,获得积分10
1秒前
2秒前
xuyirong完成签到,获得积分10
3秒前
salapao完成签到,获得积分10
5秒前
学术laji完成签到 ,获得积分10
5秒前
Alex完成签到,获得积分10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
Cloud应助科研通管家采纳,获得30
7秒前
今后应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Cloud应助科研通管家采纳,获得30
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
ZLY完成签到 ,获得积分10
10秒前
NINI完成签到,获得积分20
12秒前
15秒前
16秒前
视野胤发布了新的文献求助10
20秒前
瘦瘦曼凝发布了新的文献求助30
21秒前
白天发布了新的文献求助10
26秒前
26秒前
汉堡包应助成就问寒采纳,获得30
27秒前
28秒前
oceanao应助caq采纳,获得10
29秒前
32秒前
茶多一点酚完成签到,获得积分20
33秒前
33秒前
onehome应助sshusband采纳,获得10
33秒前
接心软审稿人完成签到 ,获得积分10
33秒前
英姑应助来日方长采纳,获得10
34秒前
Res_M发布了新的文献求助10
36秒前
37秒前
NexusExplorer应助茶多一点酚采纳,获得30
37秒前
39秒前
41秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164233
求助须知:如何正确求助?哪些是违规求助? 2814956
关于积分的说明 7907185
捐赠科研通 2474517
什么是DOI,文献DOI怎么找? 1317571
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228