亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data

遥感 卫星图像 比例(比率) 随机森林 环境科学 地图学 计算机科学 地理 人工智能
作者
Xiang Liu,Julian Frey,Catalina Munteanu,Nicole Still,Barbara Koch
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:292: 113576-113576 被引量:53
标识
DOI:10.1016/j.rse.2023.113576
摘要

Detailed information on spatial patterns of tree species diversity (TSD) is essential for biodiversity assessment, forest disturbance monitoring, and the management and conservation of forest resources. TSD mapping approaches based on the Spectral Variability Hypothesis (SVH) could provide a reliable alternative to image classification methods. However, such methods have not been tested in large-scale TSD mapping using Sentinel-1 and Sentinel-2 images. In this study, we developed a new workflow for large-scale TSD mapping in an approximately 4000 km2 temperate montane forest using Sentinel-1 and Sentinel-2 imagery-based heterogeneity metrics and topographic data. Through a systematic comparison of model performance in 24 prediction scenarios with different combinations of input variables, and a correlation analysis between six image heterogeneity metrics and two in-situ TSD indicators (species richness S and Shannon-Wiener diversity H′), we assessed the effects of vegetation phenology, image heterogeneity metrics, and sensor type on the accuracy of TSD predictions. Our results show that (1) the combination of Sentinel-1 and Sentinel-2 imagery produced higher accuracy of TSD predictions compared to the Sentinel-2 data alone, and that the further inclusion of topographic data yielded the highest accuracy (S: R2 = 0.562, RMSE = 1.502; H′: R2 = 0.628, RMSE = 0.231); (2) both Multi-Temporal and Spectral-Temporal-Metric data capture phenology-related information of tree species and significantly improved the accuracy of TSD predictions; (3) texture metrics outperformed other image heterogeneity metrics (i.e., Coefficient of Variation, Rao's Q, Convex Hull Volume, Spectral Angle Mapper, and the Convex Hull Area), and the enhanced vegetation index (EVI) derived image heterogeneity metrics were most effective in predicting TSD; and (4) the spatial distribution of TSD showed a clear decrease trend along the altitudinal gradient (r = −0.61 for S and − 0.45 for H′) and varied significantly among forest types. Our results suggest a good potential of the SVH-based approaches combined with Sentinel-1 and Sentinel-2 imagery and topographic data for large-scale TSD mapping in temperate montane forests. The TSD maps generated in our study will be valuable for forest biodiversity assessments and for developing management and conservation measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
鱼鱼完成签到 ,获得积分10
11秒前
TingtingGZ发布了新的文献求助10
11秒前
11秒前
ziguangrong发布了新的文献求助10
15秒前
白潇潇完成签到 ,获得积分10
17秒前
18秒前
努力搞科研完成签到,获得积分10
19秒前
23秒前
鹿芗泽发布了新的文献求助10
26秒前
敬业乐群完成签到,获得积分10
26秒前
mumu完成签到,获得积分10
28秒前
月关完成签到 ,获得积分10
33秒前
晚街听风完成签到 ,获得积分10
42秒前
繁星背后完成签到 ,获得积分10
44秒前
45秒前
柠檬树发布了新的文献求助10
48秒前
无花果应助刘言采纳,获得10
55秒前
坚强觅珍完成签到 ,获得积分10
1分钟前
1分钟前
Lan完成签到 ,获得积分10
1分钟前
欣慰小蕊完成签到,获得积分10
1分钟前
CHORHIN发布了新的文献求助10
1分钟前
Alpha完成签到 ,获得积分10
1分钟前
1分钟前
刘言发布了新的文献求助10
1分钟前
宝贝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zzy发布了新的文献求助10
1分钟前
ll发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CodeCraft应助madoudou采纳,获得10
1分钟前
刘言完成签到,获得积分20
1分钟前
1分钟前
守一完成签到,获得积分10
1分钟前
Nick_YFWS完成签到,获得积分10
1分钟前
无花果应助榴莲柿子茶采纳,获得10
1分钟前
CHORHIN完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564825
关于积分的说明 14296985
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535