Automatic Calibration for Monocular Cameras in Highway Scenes via Vehicle Vanishing Point Detection

人工智能 计算机视觉 计算机科学 消失点 校准 稳健性(进化) 残余物 摄像机切除 点云 数学 算法 生物化学 基因 统计 图像(数学) 化学
作者
Wentao Zhang,Huansheng Song,Lichen Liu
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:149 (7) 被引量:3
标识
DOI:10.1061/jtepbs.teeng-7412
摘要

Automatic camera calibration is a fundamental technology for 3D traffic parameter extraction. With the popularity of pan-tilt-zoom cameras, this technique demonstrates great potential to enhance traffic safety and efficiency, especially for highways. This paper aims to present a fully automatic calibration method for surveillance cameras in highway scenes. Our system is divided into two stages. In the first stage, a deep convolution neural network was used to estimate a pair of orthogonal vanishing points from multiple vehicles. This process transformed vanishing point detection into an estimation of vehicle direction, which was further determined by introducing the central residual mechanism. In the diamond space, the straight lines formed by these directions accumulated the final positions of the vanishing points. More importantly, we proposed a novel algorithm for estimating the lane width using vehicle trajectories in the second stage. It can be used to calculate the camera height, making the calibration fully automated. We also corrected the distorted lens using vehicle trajectories. Comprehensive experiments were conducted on the proposed data set and the BoxCars116k data set. The results indicate that the composite mechanism (i.e., classification and central residual) significantly improves the accuracy and robustness of the vanishing point estimation. Combined with automatic camera height estimation, our technology is superior to the most representative methods in calibration performance. Since it does not have any constraints on road geometry and camera placement, our approach applies to most highway surveillance systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
hihi发布了新的文献求助10
2秒前
yaohuimin发布了新的文献求助10
2秒前
2秒前
無期发布了新的文献求助10
4秒前
帅气的Bond发布了新的文献求助10
5秒前
FFFFFFG发布了新的文献求助10
5秒前
劲秉应助寒冷新瑶采纳,获得30
6秒前
大个应助怡然白竹采纳,获得10
6秒前
和谐乌龟发布了新的文献求助10
6秒前
神泽发布了新的文献求助10
6秒前
7秒前
8秒前
77发布了新的文献求助10
8秒前
11秒前
Dawn完成签到 ,获得积分10
12秒前
13秒前
李冰发布了新的文献求助10
14秒前
15秒前
LYT发布了新的文献求助10
15秒前
123456发布了新的文献求助20
15秒前
董昌铭发布了新的文献求助10
16秒前
cc发布了新的文献求助10
17秒前
sui发布了新的文献求助10
18秒前
岁月如歌发布了新的文献求助10
19秒前
完美世界应助Pendragon采纳,获得10
20秒前
Hezzzz完成签到,获得积分10
21秒前
DKX完成签到,获得积分10
23秒前
桐桐应助17采纳,获得10
24秒前
沾沾自喜发布了新的文献求助30
25秒前
脑洞疼应助刀客特liu采纳,获得10
26秒前
神泽完成签到,获得积分10
26秒前
贷款做科研完成签到,获得积分10
27秒前
帅气的Bond完成签到,获得积分10
27秒前
27秒前
pluto应助科研通管家采纳,获得20
29秒前
Akim应助無期采纳,获得10
29秒前
Owen应助科研通管家采纳,获得10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735888
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016230
捐赠科研通 2996269
什么是DOI,文献DOI怎么找? 1644011
邀请新用户注册赠送积分活动 781681
科研通“疑难数据库(出版商)”最低求助积分说明 749425