沙棘
肿瘤坏死因子α
超氧化物歧化酶
谷胱甘肽过氧化物酶
TLR4型
氧化应激
炎症
谷胱甘肽
化学
免疫学
药理学
医学
生物化学
酶
食品科学
作者
Shihua Zhao,Jiayue Liu,Yanyan Wang,Mengting Shao,Lihong Wang,Weiwei Tang,Yuliang Wang,Xiaoliang Li
摘要
The therapeutic properties of Hippophae rhamnoides L. were known in Ancient Greece and in Tibetan and Mongolian medicine, which commonly used it for the treatment of heart ailments, rheumatism, and brain disorders. Modern studies have indicated that Hippophae rhamnoides L. polysaccharide (HRP) can improve cognitive impairment in mice with Alzheimer's disease (AD) but the specific mechanisms of the protective effect of HRP have not been elucidated fully.Our results showed that Hippophae rhamnoides L. polysaccharide I (HRPI) improved pathological behaviors related to memory and cognition, and reduced 1 Beta-amyloid (Aβ) peptide deposition and neuronal cell necrosis. Pretreatment with Hippophae rhamnoides L. polysaccharide I (HRPI) also decreased the level of Toll-like receptor 4 (TLR4) and Myeloid differentiation factor 88 (MyD88), and reduced the release of inflammatory factors Tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) in the brains of mice with AD. Treatment with HRPI also suppressed the expression level of Recombinant Kelch Like ECH Associated Protein 1 (KEAP1), and increased the levels of Nuclear factor erythroid 2-Related Factor 2 (Nrf2), antioxidant enzymes Superoxide dismutase (SOD) and Glutathione peroxidase (GSH-Px) in the brains of AD mice.On the whole, these findings revealed that HRPI could improve the learning and memory ability and attenuate pathologic impairment in AD mice, and the underlying mechanisms may involve mediating oxidative stress and inflammation, possibly through the regulation of the Keap1/Nrf2 and TLR4/MyD88 signaling pathways. © 2023 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI