Two-Stage Self-Supervised Cycle-Consistency Transformer Network for Reducing Slice Gap in MR Images

卷积神经网络 人工智能 计算机科学 数据一致性 深度学习 一致性(知识库) 人工神经网络 变压器 模式识别(心理学) 计算机视觉 电压 物理 量子力学 操作系统
作者
Zhiyang Lu,Jian Wang,Zheng Li,Shihui Ying,Jun Wang,Jun Shi,Dinggang Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3337-3348 被引量:9
标识
DOI:10.1109/jbhi.2023.3271815
摘要

Magnetic resonance (MR) images are usually acquired with large slice gap in clinical practice, i.e., low resolution (LR) along the through-plane direction. It is feasible to reduce the slice gap and reconstruct high-resolution (HR) images with the deep learning (DL) methods. To this end, the paired LR and HR images are generally required to train a DL model in a popular fully supervised manner. However, since the HR images are hardly acquired in clinical routine, it is difficult to get sufficient paired samples to train a robust model. Moreover, the widely used convolutional Neural Network (CNN) still cannot capture long-range image dependencies to combine useful information of similar contents, which are often spatially far away from each other across neighboring slices. To this end, a Two-stage Self-supervised Cycle-consistency Transformer Network (TSCTNet) is proposed to reduce the slice gap for MR images in this work. A novel self-supervised learning (SSL) strategy is designed with two stages respectively for robust network pre-training and specialized network refinement based on a cycle-consistency constraint. A hybrid Transformer and CNN structure is utilized to build an interpolation model, which explores both local and global slice representations. The experimental results on two public MR image datasets indicate that TSCTNet achieves superior performance over other compared SSL-based algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
甜蜜海蓝发布了新的文献求助10
1秒前
1秒前
dddd发布了新的文献求助10
2秒前
2秒前
2秒前
茉莉花发布了新的文献求助10
3秒前
MOFS完成签到,获得积分10
3秒前
科研通AI5应助lpf采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
怡然觅柔发布了新的文献求助10
4秒前
4秒前
4秒前
lee完成签到,获得积分10
4秒前
4秒前
鱼儿游完成签到 ,获得积分10
4秒前
科研通AI5应助11采纳,获得10
4秒前
5秒前
木木发布了新的文献求助10
6秒前
wanci应助愉快的鸭采纳,获得10
6秒前
lovecharlie发布了新的文献求助10
7秒前
实验室应助天天采纳,获得200
8秒前
8秒前
Morgans00发布了新的文献求助10
9秒前
9秒前
茉莉花完成签到,获得积分10
9秒前
9秒前
韩老慢发布了新的文献求助10
9秒前
盐碱地杂草完成签到,获得积分10
9秒前
倪妮发布了新的文献求助10
10秒前
10秒前
TOF发布了新的文献求助10
10秒前
zs完成签到 ,获得积分10
11秒前
13秒前
脑洞疼应助zzz627采纳,获得10
13秒前
13秒前
拜拜拜发布了新的文献求助20
13秒前
CodeCraft应助lovecharlie采纳,获得10
14秒前
Hello应助如风随水采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075569
求助须知:如何正确求助?哪些是违规求助? 4295278
关于积分的说明 13384033
捐赠科研通 4116979
什么是DOI,文献DOI怎么找? 2254606
邀请新用户注册赠送积分活动 1259239
关于科研通互助平台的介绍 1192002