Two-Stage Self-Supervised Cycle-Consistency Transformer Network for Reducing Slice Gap in MR Images

人工智能 计算机科学 一致性(知识库) 变压器 模式识别(心理学) 电压 电气工程 工程类
作者
Zhiyang Lu,Jian Wang,Zheng Li,Shihui Ying,Jun Wang,Jun Shi,Dinggang Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3337-3348 被引量:8
标识
DOI:10.1109/jbhi.2023.3271815
摘要

Magnetic resonance (MR) images are usually acquired with large slice gap in clinical practice, i.e., low resolution (LR) along the through-plane direction. It is feasible to reduce the slice gap and reconstruct high-resolution (HR) images with the deep learning (DL) methods. To this end, the paired LR and HR images are generally required to train a DL model in a popular fully supervised manner. However, since the HR images are hardly acquired in clinical routine, it is difficult to get sufficient paired samples to train a robust model. Moreover, the widely used convolutional Neural Network (CNN) still cannot capture long-range image dependencies to combine useful information of similar contents, which are often spatially far away from each other across neighboring slices. To this end, a Two-stage Self-supervised Cycle-consistency Transformer Network (TSCTNet) is proposed to reduce the slice gap for MR images in this work. A novel self-supervised learning (SSL) strategy is designed with two stages respectively for robust network pre-training and specialized network refinement based on a cycle-consistency constraint. A hybrid Transformer and CNN structure is utilized to build an interpolation model, which explores both local and global slice representations. The experimental results on two public MR image datasets indicate that TSCTNet achieves superior performance over other compared SSL-based algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏昼发布了新的文献求助10
刚刚
cometx完成签到 ,获得积分10
1秒前
路之遥兮发布了新的文献求助10
1秒前
yy发布了新的文献求助10
1秒前
1秒前
852应助100采纳,获得10
1秒前
爱静静应助cruise采纳,获得10
2秒前
Singularity应助cruise采纳,获得10
2秒前
VDC应助cruise采纳,获得30
2秒前
2秒前
2秒前
了晨完成签到 ,获得积分10
3秒前
小xy完成签到,获得积分10
3秒前
4秒前
小昼完成签到 ,获得积分10
4秒前
尊敬的完成签到,获得积分10
5秒前
5秒前
整齐海秋完成签到,获得积分10
5秒前
5秒前
善学以致用应助白榆采纳,获得10
5秒前
JamesPei应助易达采纳,获得10
6秒前
6秒前
6秒前
圣晟胜发布了新的文献求助10
6秒前
xx发布了新的文献求助10
7秒前
忧郁觅柔完成签到 ,获得积分10
7秒前
追寻夜香发布了新的文献求助10
7秒前
昊康好完成签到,获得积分10
7秒前
8秒前
yy完成签到,获得积分10
8秒前
9秒前
缓慢天抒完成签到 ,获得积分10
9秒前
科研通AI5应助路之遥兮采纳,获得10
9秒前
爱睡觉的亮亮完成签到,获得积分10
10秒前
圈圈发布了新的文献求助10
10秒前
顾矜应助无聊先知采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678