Granular-ball-based Fast Spectral Embedding Clustering Algorithm for Large-Scale Data

聚类分析 计算机科学 比例(比率) 光谱聚类 嵌入 算法 人工智能 物理 量子力学
作者
S. B. Liu,Dongdong Cheng,Jiang Xie
标识
DOI:10.1145/3651671.3651743
摘要

When dealing with large-scale datasets, manifold learning, which is crucial for analyzing high-dimensional data, faces challenges, including low clustering accuracy and high computational complexity. In this paper, we introduce granular-ball into unsupervised manifold learning. Based on the anchor graph generated by granular-ball and spatial information, we propose a novel granular-ball-based fast spectral embedding clustering algorithm, named GB-FSEC. The GB-FSEC algorithm first employs a strategy combining granular-ball and random sampling to generate representative anchor points, constructing a new adjacency matrix to reduce data dimensionality significantly, thereby lowering computational complexity. Moreover, to avoid the complexity of adjusting the kernel parameter, GB-FSEC adopts a non-parametric strategy. Experimental results demonstrate that, compared to other methods, this approach can handle large-scale datasets and exhibits excellent performance in terms of clustering accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助柠檬采纳,获得10
1秒前
库里晚安完成签到,获得积分10
1秒前
A1len完成签到 ,获得积分10
2秒前
星辰大海应助sokach采纳,获得10
3秒前
新一发布了新的文献求助30
3秒前
守夜人完成签到,获得积分10
3秒前
习习应助孔雀翎采纳,获得10
4秒前
liu完成签到,获得积分10
4秒前
田様应助玉衡璇玑采纳,获得10
5秒前
成就梦松发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
5秒前
5秒前
7秒前
Orange应助123采纳,获得10
7秒前
9秒前
仄言完成签到,获得积分10
9秒前
10秒前
儒雅的斑马完成签到,获得积分10
10秒前
汉堡包应助咕噜仔采纳,获得10
10秒前
FashionBoy应助momo采纳,获得10
10秒前
11秒前
11秒前
12秒前
第七兵团司令完成签到,获得积分10
13秒前
13秒前
qwq应助追梦采纳,获得10
13秒前
13秒前
14秒前
我爱Chem完成签到 ,获得积分10
14秒前
半生发布了新的文献求助30
15秒前
15秒前
成就梦松完成签到,获得积分10
15秒前
byyyy完成签到,获得积分10
15秒前
温暖的俊驰完成签到,获得积分10
16秒前
Isabel完成签到,获得积分10
16秒前
yx应助陈强采纳,获得30
17秒前
sokach发布了新的文献求助10
19秒前
缓慢荔枝发布了新的文献求助10
19秒前
123发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672