Selling Bonus Actions in Video Games

随意的 电子游戏 现货市场 广告 微观经济学 营销 经济 业务 计算机科学 多媒体 材料科学 电气工程 复合材料 工程类
作者
Lifei Sheng,Xuying Zhao,Christopher Ryan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.02348
摘要

In the mobile video games industry, a common in-app purchase is for additional “moves” or “time” in single-player puzzle games. We call these in-app purchases bonus actions. In some games, bonus actions can only be purchased in advance of attempting a level of the game (pure advance sales (PAS)), yet in other games, bonus actions can only be purchased in a “spot” market that appears when an initial attempt to pass the level fails (pure spot sales). Some games offer both advance and spot purchases (hybrid advance sales). This paper studies these selling strategies for bonus actions in video games. Such a question is novel to in-app tools selling in video games, and it cannot be answered by previous advance selling studies focusing on end goods. We model the selling of bonus actions as a stochastic extensive form game. We show how the distribution of skill among players (i.e., their inherent ability to pass the level) and the inherent randomness of the game influence selling strategies. For casual games, where low-skill players have a sufficiently high probability of success in each attempt, if the proportion of high-skill players is either sufficiently large or sufficiently small, firms should adopt PAS and shut down the “spot” market. Furthermore, the player welfare-maximizing selling strategy is to sell only in the spot market. Hence, no “win-win” strategy exists for casual games. However, PAS can be a win-win for hardcore games, where low-skill players have a sufficiently low success probability for each attempt. This paper was accepted by Hemant Bhargava, information systems. Funding: C. T. Ryan received funding from NSERC Discovery [Grant RGPIN-2020-06488]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2022.02348 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不爱吃西葫芦完成签到 ,获得积分10
刚刚
刚刚
重剑无锋完成签到,获得积分10
1秒前
Renhong发布了新的文献求助10
1秒前
1秒前
1秒前
iwhisper完成签到,获得积分10
2秒前
科研通AI2S应助海绵baobao采纳,获得10
2秒前
2秒前
思源应助空曲采纳,获得10
2秒前
2秒前
3秒前
昔时旧日完成签到,获得积分10
4秒前
qsh完成签到,获得积分10
4秒前
咕_发布了新的文献求助10
4秒前
陈文娜完成签到,获得积分10
5秒前
5秒前
Fxxkme发布了新的文献求助10
5秒前
5秒前
czq完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
淡然发布了新的文献求助10
7秒前
路过完成签到,获得积分10
8秒前
8秒前
Leo完成签到 ,获得积分10
9秒前
陈槊诸完成签到 ,获得积分10
9秒前
1351567822发布了新的文献求助20
9秒前
昔昔完成签到 ,获得积分10
10秒前
枫威发布了新的文献求助10
10秒前
11秒前
11秒前
visible发布了新的文献求助10
11秒前
Shenliheng发布了新的文献求助10
11秒前
11秒前
Mendle发布了新的文献求助10
11秒前
Leonardi应助清秀的砖头采纳,获得200
11秒前
孤檠应助Sheart采纳,获得10
13秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587