已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MQL-MM: A Meta-Q-Learning-Based Multi-Objective Metaheuristic for Energy-Efficient Distributed Fuzzy Hybrid Blocking Flow-Shop Scheduling Problem

元启发式 计算机科学 流水车间调度 模糊逻辑 数学优化 作业车间调度 能源消耗 局部搜索(优化) 调度(生产过程) 人工智能 数学 地铁列车时刻表 工程类 操作系统 电气工程
作者
Zhongshi Shao,Weishi Shao,Jianrui Chen,Dechang Pi
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:10
标识
DOI:10.1109/tevc.2024.3399314
摘要

Since severe environmental problem in manufacturing industries is becoming increasingly prominent, energy-efficient production scheduling has gained more and more attentions. This paper studies an energy-efficient distributed fuzzy hybrid blocking flow-shop scheduling problem (EEDFHBFSP), where processing time and setup time are uncertain. The objective is to minimize fuzzy makespan and total fuzzy energy consumption simultaneously. To solve such problem, a mixed-integer linear programming model is firstly presented to format it. Then, a meta-Q-learning-based multi-objective metaheuristic (MQL-MM) is proposed. In MQL-MM, a machine-position-based dispatch rule is designed as the decoding scheme. A decomposition-based constructive heuristic is employed to generate the initial population with high quality and diversity. Several problem-specific search operators are developed to explore and exploit the solution space. A meta-Q-learning-based multi-objective search framework is presented to guide the using of search operators, which includes a meta-training phase and an adaptive search phase. The meta-training phase is employed to train the search operators to construct the Q-learning model. The adaptation search phase utilizes such model to conduct the automatic selection of the search operators. Moreover, an energy saving strategy is designed to improve the candidate solutions. Finally, we conduct extensive experiments. The experimental results show that the designs of MQL-MM are effective, and MQL-MM performs better than several well-performing methods on solving EEDFHBFSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大弟完成签到,获得积分10
1秒前
mouxq发布了新的文献求助100
2秒前
kxran发布了新的文献求助10
3秒前
4秒前
5秒前
赵利芹发布了新的文献求助10
5秒前
清脆的台灯完成签到,获得积分10
6秒前
7秒前
www发布了新的文献求助10
8秒前
9秒前
10秒前
纯真曼凝发布了新的文献求助10
10秒前
10秒前
行僧完成签到,获得积分10
10秒前
liu发布了新的文献求助30
12秒前
善学以致用应助Mr049采纳,获得10
12秒前
行僧发布了新的文献求助10
14秒前
victor9819发布了新的文献求助10
14秒前
6657发布了新的文献求助10
14秒前
领导范儿应助小爽采纳,获得10
16秒前
21秒前
隐形曼青应助xumengsuo采纳,获得10
21秒前
SciGPT应助66HUGE采纳,获得10
22秒前
24秒前
25秒前
天天快乐应助liu采纳,获得10
27秒前
LELE发布了新的文献求助10
27秒前
小蘑菇应助Serena采纳,获得10
27秒前
Bobo发布了新的文献求助10
28秒前
热情黄豆关注了科研通微信公众号
29秒前
30秒前
33秒前
求知的菜鸟完成签到,获得积分20
33秒前
立食劳栖发布了新的文献求助10
35秒前
35秒前
35秒前
slokni发布了新的文献求助10
37秒前
阿哈发布了新的文献求助10
37秒前
苦木发布了新的文献求助10
39秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422633
求助须知:如何正确求助?哪些是违规求助? 3022993
关于积分的说明 8903137
捐赠科研通 2710447
什么是DOI,文献DOI怎么找? 1486443
科研通“疑难数据库(出版商)”最低求助积分说明 687061
邀请新用户注册赠送积分活动 682286