MQL-MM: A Meta-Q-Learning-Based Multi-Objective Metaheuristic for Energy-Efficient Distributed Fuzzy Hybrid Blocking Flow-Shop Scheduling Problem

元启发式 计算机科学 流水车间调度 模糊逻辑 数学优化 作业车间调度 能源消耗 局部搜索(优化) 调度(生产过程) 人工智能 数学 地铁列车时刻表 工程类 操作系统 电气工程
作者
Zhongshi Shao,Weishi Shao,Jianrui Chen,Dechang Pi
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:18
标识
DOI:10.1109/tevc.2024.3399314
摘要

Since severe environmental problem in manufacturing industries is becoming increasingly prominent, energy-efficient production scheduling has gained more and more attentions. This paper studies an energy-efficient distributed fuzzy hybrid blocking flow-shop scheduling problem (EEDFHBFSP), where processing time and setup time are uncertain. The objective is to minimize fuzzy makespan and total fuzzy energy consumption simultaneously. To solve such problem, a mixed-integer linear programming model is firstly presented to format it. Then, a meta-Q-learning-based multi-objective metaheuristic (MQL-MM) is proposed. In MQL-MM, a machine-position-based dispatch rule is designed as the decoding scheme. A decomposition-based constructive heuristic is employed to generate the initial population with high quality and diversity. Several problem-specific search operators are developed to explore and exploit the solution space. A meta-Q-learning-based multi-objective search framework is presented to guide the using of search operators, which includes a meta-training phase and an adaptive search phase. The meta-training phase is employed to train the search operators to construct the Q-learning model. The adaptation search phase utilizes such model to conduct the automatic selection of the search operators. Moreover, an energy saving strategy is designed to improve the candidate solutions. Finally, we conduct extensive experiments. The experimental results show that the designs of MQL-MM are effective, and MQL-MM performs better than several well-performing methods on solving EEDFHBFSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方旋完成签到,获得积分20
刚刚
刚刚
鹤轩应助13775368635采纳,获得10
刚刚
qiqi完成签到,获得积分10
1秒前
醒醒发布了新的文献求助30
1秒前
1秒前
11231完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
黄同学发布了新的文献求助10
3秒前
3秒前
烟花应助冯前浪采纳,获得10
4秒前
咿呀喂发布了新的文献求助10
5秒前
lxaiczn发布了新的文献求助10
5秒前
6秒前
田様应助方旋采纳,获得10
6秒前
李哈哈发布了新的文献求助10
7秒前
m13965062353完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
嘿嘿发布了新的文献求助10
7秒前
8秒前
8秒前
qwer发布了新的文献求助10
8秒前
zz发布了新的文献求助10
9秒前
9秒前
ying完成签到,获得积分10
9秒前
健忘的柠檬完成签到,获得积分10
9秒前
123完成签到,获得积分10
10秒前
10秒前
亮仔发布了新的文献求助10
10秒前
11秒前
12秒前
Judy发布了新的文献求助10
12秒前
5114发布了新的文献求助10
13秒前
14秒前
依霏发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082