MQL-MM: A Meta-Q-Learning-Based Multi-Objective Metaheuristic for Energy-Efficient Distributed Fuzzy Hybrid Blocking Flow-Shop Scheduling Problem

元启发式 计算机科学 流水车间调度 模糊逻辑 数学优化 作业车间调度 能源消耗 局部搜索(优化) 调度(生产过程) 人工智能 数学 地铁列车时刻表 工程类 电气工程 操作系统
作者
Zhongshi Shao,Weishi Shao,Jianrui Chen,Dechang Pi
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:12
标识
DOI:10.1109/tevc.2024.3399314
摘要

Since severe environmental problem in manufacturing industries is becoming increasingly prominent, energy-efficient production scheduling has gained more and more attentions. This paper studies an energy-efficient distributed fuzzy hybrid blocking flow-shop scheduling problem (EEDFHBFSP), where processing time and setup time are uncertain. The objective is to minimize fuzzy makespan and total fuzzy energy consumption simultaneously. To solve such problem, a mixed-integer linear programming model is firstly presented to format it. Then, a meta-Q-learning-based multi-objective metaheuristic (MQL-MM) is proposed. In MQL-MM, a machine-position-based dispatch rule is designed as the decoding scheme. A decomposition-based constructive heuristic is employed to generate the initial population with high quality and diversity. Several problem-specific search operators are developed to explore and exploit the solution space. A meta-Q-learning-based multi-objective search framework is presented to guide the using of search operators, which includes a meta-training phase and an adaptive search phase. The meta-training phase is employed to train the search operators to construct the Q-learning model. The adaptation search phase utilizes such model to conduct the automatic selection of the search operators. Moreover, an energy saving strategy is designed to improve the candidate solutions. Finally, we conduct extensive experiments. The experimental results show that the designs of MQL-MM are effective, and MQL-MM performs better than several well-performing methods on solving EEDFHBFSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jiejie发布了新的文献求助10
刚刚
我是老大应助HEIHEI采纳,获得10
1秒前
深情安青应助五小采纳,获得10
1秒前
1秒前
芽芽乐完成签到,获得积分10
2秒前
蜡笔小新发布了新的文献求助10
2秒前
2秒前
3秒前
思维隋完成签到 ,获得积分10
3秒前
Lucas应助科研小白菜采纳,获得10
3秒前
3秒前
朴实绝悟完成签到,获得积分10
4秒前
搜集达人应助zhuangyuan采纳,获得10
4秒前
华国锋完成签到,获得积分10
4秒前
4秒前
常常完成签到 ,获得积分10
4秒前
wwwww123完成签到,获得积分10
4秒前
4秒前
长医德莱文完成签到,获得积分10
4秒前
5秒前
xiaorang完成签到,获得积分10
5秒前
5秒前
HH完成签到,获得积分10
6秒前
gej完成签到,获得积分10
6秒前
吴彦祖完成签到,获得积分10
6秒前
6秒前
July应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
July应助科研通管家采纳,获得20
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
科研助手6应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
8秒前
希望天下0贩的0应助白菜采纳,获得10
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074