Applications of artificial intelligence in diagnosis of uncommon cystoid macular edema using optical coherence tomography imaging: A systematic review

光学相干层析成像 黄斑水肿 医学 眼科 连贯性(哲学赌博策略) 验光服务 视力 物理 量子力学
作者
Farhang Hosseini,Farkhondeh Asadi,Reza Rabiei,Fatemeh Kiani,Rayan Ebnali Harari
出处
期刊:Survey of Ophthalmology [Elsevier BV]
卷期号:69 (6): 937-944 被引量:1
标识
DOI:10.1016/j.survophthal.2024.06.005
摘要

Cystoid macular edema (CME) is a sight-threatening condition often associated with inflammatory and diabetic diseases. Early detection is crucial to prevent irreversible vision loss. Artificial intelligence (AI) has shown promise in automating CME diagnosis through optical coherence tomography (OCT) imaging, but its utility needs critical evaluation. This systematic review assesses the application of AI to diagnosis CME, specifically focusing on disorders like postoperative CME (Irvine Gass syndrome) and retinitis pigmentosa without obvious vasculopathy, using OCT imaging. A comprehensive search was conducted across 6 databases (PubMed, Scopus, Web of Science, Wiley, ScienceDirect, and IEEE) from 2018 to November, 2023. Twenty-three articles met the inclusion criteria and were selected for in-depth analysis. We evaluate AI's role in CME diagnosis and its performance in "detection", "classification" and "segmentation" of OCT retinal images. We found that convolutional neural network (CNN)-based methods consistently outperformed other machine learning techniques, achieving an average accuracy of over 96% in detecting and identifying CME from OCT images. Despite certain limitations such as dataset size and ethical concerns, the synergy between AI and OCT, particularly through CNNs, holds promise for significantly advancing CME diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助yang采纳,获得10
1秒前
蕾蕾发布了新的文献求助10
1秒前
2秒前
3秒前
FreeRay发布了新的文献求助10
3秒前
4秒前
4秒前
shine发布了新的文献求助10
5秒前
5秒前
Atlantis发布了新的文献求助10
5秒前
小马过河应助cq采纳,获得10
5秒前
默默成风完成签到,获得积分10
5秒前
wuludie应助林狗采纳,获得10
6秒前
Emotion发布了新的文献求助10
7秒前
xwc关闭了xwc文献求助
7秒前
同学好完成签到,获得积分10
7秒前
FFr大师完成签到,获得积分20
8秒前
英勇沧海发布了新的文献求助10
9秒前
火星上雨珍完成签到,获得积分10
10秒前
生命完成签到,获得积分20
11秒前
11秒前
11秒前
爆米花应助潇洒小松鼠采纳,获得10
11秒前
木木发布了新的文献求助10
11秒前
12秒前
shine完成签到,获得积分20
12秒前
12秒前
秘密完成签到 ,获得积分10
13秒前
14秒前
15秒前
wuludie应助林狗采纳,获得10
15秒前
Emotion完成签到,获得积分10
16秒前
zzp发布了新的文献求助10
17秒前
dadaba发布了新的文献求助10
17秒前
yang发布了新的文献求助10
17秒前
19秒前
Punch发布了新的文献求助10
19秒前
20秒前
21秒前
英勇沧海完成签到,获得积分20
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733061
求助须知:如何正确求助?哪些是违规求助? 3277252
关于积分的说明 10001195
捐赠科研通 2992903
什么是DOI,文献DOI怎么找? 1642490
邀请新用户注册赠送积分活动 780441
科研通“疑难数据库(出版商)”最低求助积分说明 748844