机器人
自愈水凝胶
刺激(心理学)
材料科学
软机器人
计算机科学
纳米技术
生物医学工程
人工智能
工程类
心理学
高分子化学
心理治疗师
作者
Lihao Zhang,Lehao Ren,Yufei Chen,Yue Cao,Sunlong Li,Weipeng Lu,Yaoyuan Jia,Yachun Li,Cihui Liu,Chen Li,Qian Dong
标识
DOI:10.1002/adhm.202400439
摘要
Abstract Soft‐bodied aquatic organisms have exhibited remarkable capabilities in navigating and moving within liquid environments serving as a profound inspiration for the development of bionic robots with intricate movements. Traditional rigid components are being replaced by stimulus‐responsive soft materials such as hydrogels and shape memory polymers, leading to the creation of dynamically responsive soft robots. In this study, the development of a bionic robot inspired by the shape of an octopus and the adsorptive properties of its tentacles, specifically tailored for targeted stimulation and pH sensing in the cervix, are presented. This approach involves the design of a soft, water‐based Janus adhesive hydrogel patch that adheres to specific parts of the cervix and responds to pH changes through external stimuli. The hydrogel patch incorporates inverse opal microstructures mimicking the legs of an octopus, to facilitate efficient and stable locomotion, unidirectional transport of biofluids, and pH‐responsive behavior. This miniature bionic robot showcases controlled adhesion and precise unidirectional fluid transport highlighting its potential for targeted stimulus response and pH sensing in the uterine cervical tract. This breakthrough opens new avenues for medical applications within the expanding field of soft‐bodied robotics.
科研通智能强力驱动
Strongly Powered by AbleSci AI