POMDP-based Probabilistic Decision Making for Path Planning in Wheeled Mobile Robot

部分可观测马尔可夫决策过程 移动机器人 概率逻辑 运动规划 计算机科学 路径(计算) 人工智能 机器人 人机交互 机器学习 马尔可夫链 马尔可夫模型 计算机网络
作者
S. D. Deshpande,R Harikrishnan,Rahee Walambe
出处
期刊:Cognitive robotics [Elsevier]
卷期号:4: 104-115
标识
DOI:10.1016/j.cogr.2024.06.001
摘要

Path Planning in a collaborative mobile robot system has been a research topic for many years. Uncertainty in robot states, actions, and environmental conditions makes finding the optimum path for navigation highly challenging for the robot. To achieve robust behavior for mobile robots in the presence of static and dynamic obstacles, it is pertinent that the robot employs a path-finding mechanism that is based on the probabilistic perception of the uncertainty in various parameters governing its movement. Partially Observable Markov Decision Process (POMDP) is being used by many researchers as a proven methodology for handling uncertainty. The POMDP framework requires manually setting up the state transition matrix, the observation matrix, and the reward values. This paper describes an approach for creating the POMDP model and demonstrates its working by simulating it on two mobile robots destined on a collision course. Selective test cases are run on the two robots with three categories – MDP (POMDP with belief state spread of 1), POMDP with distribution spread of belief state over ten observations, and distribution spread across two observations. Uncertainty in the sensor data is simulated with varying levels of up to 10%. The results are compared and analyzed. It is demonstrated that when the observation probability spread is increased from 2 to 10, collision reduces from 34% to 22%, indicating that the system's robustness increases by 12% with only a marginal increase of 3.4% in the computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuexuexixi123完成签到 ,获得积分10
刚刚
2秒前
平淡的冰巧完成签到,获得积分10
2秒前
2秒前
浮游应助志不在科研采纳,获得10
3秒前
two发布了新的文献求助10
4秒前
懒洋洋完成签到 ,获得积分10
5秒前
JL发布了新的文献求助10
5秒前
Eddy完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
小杭76应助科研通管家采纳,获得10
6秒前
AMD发布了新的文献求助10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
迷路元枫关注了科研通微信公众号
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
烤冷面应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
tuanheqi应助科研通管家采纳,获得150
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160