Exploring Bonding Mechanism of SiCN for Hybrid Bonding

机制(生物学) 材料科学 阳极连接 光电子学 物理 量子力学
作者
Sodai Ebiko,Serena Iacovo,Soon-Aik Chew,Boyao Zhang,Akira Uedono,Fumihiro Inoue
标识
DOI:10.1109/ectc51529.2024.00331
摘要

The demand for technologies enabling higher performance, greater capacity at lower cost has been growing. Wafer-to-Wafer hybrid bonding for three-dimensional architectures allows for high interconnect density with a minimal footprint. SiCN has been considered as a superior dielectric layer. However, the mechanism of SiCN-SiCN bonding has not been clearly described in comparison to SiO 2 -SiO 2 bonding. In this study, we investigated the surface and subsurface of dielectric films (SiCN, SiO 2 ) at several post-process steps to understand their characteristics. Positron Annihilation Spectroscopy was employed to detect open spaces. This measurement revealed that SiCN film possesses a higher density of atomic-level voids, fewer outgasses, and more dangling bonds (DBs) than SiO 2 film. These results were consistent with the tendency of water desorption observed through thermal desorption spectroscopy. Based on these findings, it is assumed that a large number of water stored in the dielectric film affects the generation of interfacial voids when wafers are bonded and annealed at decent temperatures. However, many DBs in the SiCN film enable the suppression of voids, leading to void-free. Additionally, the impact of pre-surface cleaning/conditioning prior to physical vapor deposition (PVD) barrier deposition was investigated. It was found that strong Ar plasma has a negative impact on the in-situ plasma cleaning for bonding when the process is not well optimized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
russing完成签到 ,获得积分10
刚刚
文献求助完成签到,获得积分10
刚刚
1秒前
yar应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
小瑄完成签到 ,获得积分10
2秒前
大胆的弼完成签到,获得积分10
2秒前
木又权完成签到,获得积分10
3秒前
你已成风完成签到,获得积分10
4秒前
温文尔雅完成签到,获得积分10
4秒前
上官若男应助LinYX采纳,获得10
5秒前
努力学习才能找到工作完成签到,获得积分10
5秒前
OK完成签到,获得积分10
5秒前
Lucas应助典雅的丹寒采纳,获得10
5秒前
调研昵称发布了新的文献求助10
6秒前
微风打了烊完成签到 ,获得积分10
6秒前
学无止境完成签到,获得积分10
6秒前
6秒前
真三发布了新的文献求助10
6秒前
7秒前
7秒前
迷路的手机完成签到 ,获得积分10
7秒前
9秒前
猫独秀完成签到,获得积分10
9秒前
潇洒的凌兰完成签到,获得积分10
10秒前
wqy发布了新的文献求助10
10秒前
是一整个圆完成签到,获得积分10
10秒前
11秒前
cen完成签到,获得积分10
11秒前
科研牛马人完成签到,获得积分10
11秒前
liangguangyuan完成签到 ,获得积分10
11秒前
12秒前
fanlin完成签到,获得积分0
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467001
求助须知:如何正确求助?哪些是违规求助? 3059773
关于积分的说明 9068088
捐赠科研通 2750239
什么是DOI,文献DOI怎么找? 1509127
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696953