稳健性(进化)
计算机科学
算法
目标检测
人工智能
计算机视觉
模式识别(心理学)
生物化学
化学
基因
作者
Rejin Varghese,M. Sambath
标识
DOI:10.1109/adics58448.2024.10533619
摘要
In recent years, the You Only Look Once (YOLO) series of object detection algorithms have garnered significant attention for their speed and accuracy in real-time applications. This paper presents YOLOv8, a novel object detection algorithm that builds upon the advancements of previous iterations, aiming to further enhance performance and robustness. Inspired by the evolution of YOLO architectures from YOLOv1 to YOLOv7, as well as insights from comparative analyses of models like YOLOv5 and YOLOv6, YOLOv8 incorporates key innovations to achieve optimal speed and accuracy. Leveraging attention mechanisms and dynamic convolution, YOLOv8 introduces improvements specifically tailored for small object detection, addressing challenges highlighted in YOLOv7. Additionally, the integration of voice recognition techniques enhances the algorithm's capabilities for video-based object detection, as demonstrated in YOLOv7. The proposed algorithm undergoes rigorous evaluation against state-of-the-art benchmarks, showcasing superior performance in terms of both detection accuracy and computational efficiency. Experimental results on various datasets confirm the effectiveness of YOLOv8 across diverse scenarios, further validating its suitability for real-world applications. This paper contributes to the ongoing advancements in object detection research by presenting YOLOv8 as a versatile and high-performing algorithm, poised to address the evolving needs of computer vision systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI