An Experimental Study on Deep Learning Technique Implemented on Low Specification OpenMV Cam H7 Device

计算机科学 深度学习 人工智能
作者
Rosa Andrie Asmara,Ulla Delfana Rosiani,Mustika Mentari,Arie Rachmad Syulistyo,Milyun Ni’ma Shoumi,Mungki Astiningrum
出处
期刊:JOIV : International Journal on Informatics Visualization [Politeknik Negeri Padang]
卷期号:8 (2): 1017-1017
标识
DOI:10.62527/joiv.8.2.2299
摘要

This research aims to identify and recognize the OpenMV Camera H7. In this research, all tests were carried out using Deep Machine Learning and applied to several functions, including Face Recognition, Facial Expression Recognition, Detection and Calculation of the Number of Objects, and Object Depth Estimation. Face Expression Recognition was used in the Convolutional Neural Network to recognize five facial expressions: angry, happy, neutral, sad, and surprised. This allowed the use of a primary dataset with a 48MP resolution camera. Some scenarios are prepared to meet environment variability in the implementation, such as indoor and outdoor environments, with different lighting and distance. Most pre-trained models in each identification or recognition used mobileNetV2 since this model allows low computation cost and matches with low hardware specifications. The object detection and counting module compared two methods: the conventional Haar Cascade and the Deep Learning MobileNetV2 model. The training and validation process is not recommended to be carried out on OpenMV devices but on computers with high specifications. This research was trained and validated using selected primary and secondary data, with 1500 image data. The computing time required is around 5 minutes for ten epochs. On average, recognition results on OpenMV devices take around 0.3 - 2 seconds for each frame. The accuracy of the recognition results varies depending on the pre-trained model and the dataset used, but overall, the accuracy levels achieved tend to be very high, exceeding 96.6%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄归尘完成签到 ,获得积分10
刚刚
1秒前
3秒前
einuo完成签到,获得积分10
3秒前
龚成明完成签到,获得积分10
4秒前
5秒前
5秒前
研友_8DAv0L发布了新的文献求助10
6秒前
6秒前
einuo发布了新的文献求助10
6秒前
光华完成签到 ,获得积分10
7秒前
远方完成签到 ,获得积分10
8秒前
小生完成签到,获得积分10
8秒前
8秒前
彩色冰纷发布了新的文献求助10
9秒前
梦桃完成签到 ,获得积分10
10秒前
10秒前
11秒前
gongyh完成签到,获得积分10
11秒前
爆米花应助研友_8DAv0L采纳,获得10
12秒前
英俊的铭应助Tjn采纳,获得10
12秒前
haishixigua完成签到,获得积分10
13秒前
kelite完成签到,获得积分20
14秒前
研友_VZG7GZ应助AI imaging采纳,获得10
14秒前
一念来回发布了新的文献求助10
14秒前
炙热念双完成签到 ,获得积分10
15秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
竹筏过海应助科研通管家采纳,获得30
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
阿刁完成签到,获得积分10
17秒前
18秒前
羿_liu发布了新的文献求助10
18秒前
大红是活宝呢完成签到,获得积分10
18秒前
山栀茶发布了新的文献求助30
21秒前
markerfxq完成签到,获得积分10
21秒前
23秒前
Lily应助布鲁盖采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522937
求助须知:如何正确求助?哪些是违规求助? 3103910
关于积分的说明 9267916
捐赠科研通 2800665
什么是DOI,文献DOI怎么找? 1537075
邀请新用户注册赠送积分活动 715371
科研通“疑难数据库(出版商)”最低求助积分说明 708759