Data-driven message optimization in dynamic sports media: an artificial intelligence approach to predict consumer response

计算机科学 大数据 预测分析 机器学习 人工智能 数据科学 预测建模 分析 生物识别 消费者行为 营销 数据挖掘 业务
作者
Elisa Herold,Aaditya Singh,Boris Feodoroff,Christoph Breuer
出处
期刊:Sport Management Review [Informa]
卷期号:: 1-24 被引量:1
标识
DOI:10.1080/14413523.2024.2372122
摘要

Artificial intelligence (AI) and big data have the potential to promote advancement across various industries. Sport management and marketing have also significantly transformed due to rapid technological advances such as those in AI and big data analytics. Especially sports companies, however, are still underutilizing the potential of AI. At the same time, considering the existing sport marketing research, the effectiveness and optimization of dynamic marketing stimuli in dynamic sport media settings remains unclear. This study aims to assess the differences between two AI models' predictive capabilities with and without access to consumers' biometric data when forecasting the influence of game features on consumers' responses. Academic theoretical models indicate that individual biometric features have a considerable influence on consumers' responses; nevertheless, it remains impractical for companies to access these data concerning message effectiveness and ROI evaluation. Therefore, the study attempts to enhance the feasibility of message optimization for companies by trialing a real-time prediction derived from game features alone, exemplifying how much predictive capability is lost by non-available consumer data. Two supervised machine learning models (one initial, primarily theoretical based model; one adapted model due to available data) were trained to reanalyze large-scale eye tracking and game-related data, resulting in high predictive accuracy and appropriate applicability of the models. Both models were able to predict consumers' responses with over 90% accuracy (initial model: 96%; adapted model: 94%). This study exemplifies AI usage in sport marketing and management, enabling companies to implement more effective marketing messages and strategies for their sponsorship based on real-time evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助大山采纳,获得30
刚刚
可爱的函函应助DavidWebb采纳,获得10
刚刚
向上先生完成签到,获得积分10
1秒前
都是应助露露采纳,获得20
1秒前
斯文败类应助轻歌水越采纳,获得10
1秒前
1秒前
2秒前
Roach完成签到,获得积分10
2秒前
pan完成签到,获得积分10
2秒前
simple发布了新的文献求助10
2秒前
hh完成签到,获得积分10
2秒前
3秒前
科研通AI2S应助西北望采纳,获得10
3秒前
ZYC007完成签到,获得积分10
3秒前
4秒前
NexusExplorer应助apple采纳,获得10
4秒前
cccc完成签到,获得积分10
4秒前
4秒前
springkaka完成签到,获得积分0
5秒前
shy完成签到,获得积分10
5秒前
相爱就永远在一起完成签到,获得积分10
6秒前
李若风完成签到,获得积分10
6秒前
HH完成签到,获得积分10
6秒前
枣核儿完成签到,获得积分10
7秒前
GGbong完成签到 ,获得积分10
7秒前
万能图书馆应助威武的捕采纳,获得10
8秒前
复杂小海豚应助威武的捕采纳,获得10
8秒前
李博士发布了新的文献求助30
8秒前
司徒涟妖完成签到,获得积分10
9秒前
Kay76完成签到,获得积分10
9秒前
CCC完成签到 ,获得积分10
10秒前
疯狂的碧凡完成签到,获得积分10
10秒前
王一博完成签到,获得积分10
11秒前
彭鱼晏发布了新的文献求助30
11秒前
lucia5354完成签到,获得积分10
11秒前
14秒前
14秒前
别先生完成签到,获得积分10
14秒前
duts完成签到 ,获得积分10
15秒前
复杂飞瑶完成签到 ,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565