羟甲基
聚丙烯酰胺
化学
酰胺
苯酚
催化作用
醛
甲醛
高分子化学
摩尔比
有机化学
作者
Jie He,Zi Ye,Dong Liao,Qingmei Chen,Hang‐rui Liu,Hai‐bo Fan,Min Luo,Cheng Zhong
摘要
Abstract As an in‐depth profile control agent, water‐soluble phenolic resin crosslinking polyacrylamide weak gel has been widely used in the middle and high water cut stage of water flooding reservoir. In this study, the phenolic resin was synthesized by two‐step alkali catalysis. Factors influencing the synthesis of phenolic resin, including the molar ratio of phenol and formaldehyde, catalyst types, reaction time, were investigated with hydroxylmethyl and aldehyde content as the criterion. When the molar ratio of phenolic resin was 1:2 and NaOH was catalyst, at 80°C for 4 h, the phenolic resin had the highest hydroxymethyl content (49.37%) and the lowest free aldehyde content (2.95%). Weak gel was formed by the reaction of LT002‐polyacrylamide with phenolic resin. Taking the gelation time and strength as criteria, the factors influencing the crosslinking property, including hydroxymethyl content, crosslinker addition, and polyacrylamide concentration were investigated respectively. Under optimal formulation, the property investigation shows that the hydroxymethyl group in the phenolic resin can be crosslinked with the amide group in polyacrylamide, the gelation time is long (50–60 h), and the gelation strength is larger than 5 × 10 4 mPa s, which is conductive to the plugging of deep oil layers. When the permeability was 5061 × 10 −3 μm 2 , the plugging rate was 72.73%.
科研通智能强力驱动
Strongly Powered by AbleSci AI