Multi-grained contrastive representation learning for label-efficient lesion segmentation and onset time classification of acute ischemic stroke

过度拟合 计算机科学 人工智能 分割 溶栓 模式识别(心理学) 特征学习 任务(项目管理) 特征(语言学) 机器学习 人工神经网络 医学 语言学 哲学 管理 精神科 心肌梗塞 经济
作者
Jiarui Sun,Yuhao Liu,Yan Xi,Gouenou Coatrieux,Jean-Louis Coatrieux,Xu Ji,Liang Jiang,Yang Chen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103250-103250 被引量:1
标识
DOI:10.1016/j.media.2024.103250
摘要

Ischemic lesion segmentation and the time since stroke (TSS) onset classification from paired multi-modal MRI imaging of unwitnessed acute ischemic stroke (AIS) patients is crucial, which supports tissue plasminogen activator (tPA) thrombolysis decision-making. Deep learning methods demonstrate superiority in TSS classification. However, they often overfit task-irrelevant features due to insufficient paired labeled data, resulting in poor generalization. We observed that unpaired data are readily available and inherently carry task-relevant cues, but are less often considered and explored. Based on this, in this paper, we propose to fully excavate the potential of unpaired unlabeled data and use them to facilitate the downstream AIS analysis task. We first analyse the utility of features at the varied grain and propose a multi-grained contrastive learning (MGCL) framework to learn task-related prior representations from both coarse-grained and fine-grained levels. The former can learn global prior representations to enhance the location ability for the ischemic lesions and perceive the healthy surroundings, while the latter can learn local prior representations to enhance the perception ability for semantic relation between the ischemic lesion and other health regions. To better transfer and utilize the learned task-related representation, we designed a novel multi-task framework to simultaneously achieve ischemic lesion segmentation and TSS classification with limited labeled data. In addition, a multi-modal region-related feature fusion module is proposed to enable the feature correlation and synergy between multi-modal deep image features for more accurate TSS decision-making. Extensive experiments on the large-scale multi-center MRI dataset demonstrate the superiority of the proposed framework. Therefore, it is promising that it helps better stroke evaluation and treatment decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文艺安青发布了新的文献求助10
2秒前
hajy完成签到 ,获得积分10
2秒前
2秒前
八点必起完成签到,获得积分10
4秒前
酷波er应助花开采纳,获得10
4秒前
大大小小发布了新的文献求助10
5秒前
zzz发布了新的文献求助10
5秒前
傻傻的芷巧完成签到,获得积分10
9秒前
一五完成签到,获得积分10
9秒前
9秒前
Kaysarr完成签到,获得积分10
13秒前
张小南完成签到,获得积分10
13秒前
gxt完成签到 ,获得积分10
14秒前
楠楠完成签到,获得积分10
14秒前
15秒前
艾科研发布了新的文献求助10
15秒前
净意完成签到,获得积分10
16秒前
ghost完成签到,获得积分20
16秒前
腼腆的小熊猫完成签到 ,获得积分10
18秒前
学术大白完成签到 ,获得积分10
18秒前
陈氏完成签到,获得积分10
19秒前
聪慧勒发布了新的文献求助10
20秒前
谷粱寒烟完成签到,获得积分10
23秒前
默顿的笔记本完成签到,获得积分20
28秒前
坦率的依风完成签到 ,获得积分10
32秒前
清爽聋五完成签到,获得积分10
34秒前
SciGPT应助科研通管家采纳,获得10
35秒前
Chirstina应助一只虎斑猫采纳,获得20
35秒前
田様应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
隐形曼青应助科研通管家采纳,获得10
35秒前
35秒前
CodeCraft应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
爆米花应助科研通管家采纳,获得10
36秒前
37秒前
铲铲完成签到,获得积分10
37秒前
38秒前
lucky莼完成签到,获得积分10
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023