亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-grained contrastive representation learning for label-efficient lesion segmentation and onset time classification of acute ischemic stroke

过度拟合 计算机科学 人工智能 分割 溶栓 模式识别(心理学) 特征学习 任务(项目管理) 特征(语言学) 机器学习 人工神经网络 医学 语言学 哲学 管理 精神科 心肌梗塞 经济
作者
Jiarui Sun,Yuhao Liu,Yan Xi,Gouenou Coatrieux,Jean-Louis Coatrieux,Xu Ji,Liang Jiang,Yang Chen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103250-103250 被引量:8
标识
DOI:10.1016/j.media.2024.103250
摘要

Ischemic lesion segmentation and the time since stroke (TSS) onset classification from paired multi-modal MRI imaging of unwitnessed acute ischemic stroke (AIS) patients is crucial, which supports tissue plasminogen activator (tPA) thrombolysis decision-making. Deep learning methods demonstrate superiority in TSS classification. However, they often overfit task-irrelevant features due to insufficient paired labeled data, resulting in poor generalization. We observed that unpaired data are readily available and inherently carry task-relevant cues, but are less often considered and explored. Based on this, in this paper, we propose to fully excavate the potential of unpaired unlabeled data and use them to facilitate the downstream AIS analysis task. We first analyse the utility of features at the varied grain and propose a multi-grained contrastive learning (MGCL) framework to learn task-related prior representations from both coarse-grained and fine-grained levels. The former can learn global prior representations to enhance the location ability for the ischemic lesions and perceive the healthy surroundings, while the latter can learn local prior representations to enhance the perception ability for semantic relation between the ischemic lesion and other health regions. To better transfer and utilize the learned task-related representation, we designed a novel multi-task framework to simultaneously achieve ischemic lesion segmentation and TSS classification with limited labeled data. In addition, a multi-modal region-related feature fusion module is proposed to enable the feature correlation and synergy between multi-modal deep image features for more accurate TSS decision-making. Extensive experiments on the large-scale multi-center MRI dataset demonstrate the superiority of the proposed framework. Therefore, it is promising that it helps better stroke evaluation and treatment decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhao完成签到,获得积分10
13秒前
charih完成签到 ,获得积分10
29秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
赘婿应助科研通管家采纳,获得10
45秒前
赘婿应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
FashionBoy应助白云四季采纳,获得10
1分钟前
jyzzz应助张浩采纳,获得10
1分钟前
2分钟前
2分钟前
wangzai发布了新的文献求助10
2分钟前
赘婿应助堪冥采纳,获得10
2分钟前
wangzai完成签到,获得积分10
2分钟前
荷兰香猪完成签到,获得积分10
2分钟前
2分钟前
Wei发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
Tobby发布了新的文献求助20
2分钟前
时间煮雨我煮鱼完成签到,获得积分10
2分钟前
Tobby完成签到,获得积分10
3分钟前
Voyager发布了新的文献求助10
3分钟前
3分钟前
咸鱼lmye发布了新的文献求助10
3分钟前
4分钟前
咸鱼lmye完成签到 ,获得积分20
4分钟前
wyz完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
ding应助科研通管家采纳,获得10
4分钟前
Voyager发布了新的文献求助50
4分钟前
5分钟前
5分钟前
领导范儿应助老橘子采纳,获得30
5分钟前
5分钟前
堪冥发布了新的文献求助10
6分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746922
求助须知:如何正确求助?哪些是违规求助? 5440291
关于积分的说明 15356030
捐赠科研通 4886949
什么是DOI,文献DOI怎么找? 2627491
邀请新用户注册赠送积分活动 1575931
关于科研通互助平台的介绍 1532729