重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Multi-grained contrastive representation learning for label-efficient lesion segmentation and onset time classification of acute ischemic stroke

过度拟合 计算机科学 人工智能 分割 溶栓 模式识别(心理学) 特征学习 任务(项目管理) 特征(语言学) 机器学习 人工神经网络 医学 哲学 精神科 经济 管理 心肌梗塞 语言学
作者
Jiarui Sun,Yuhao Liu,Yan Xi,Gouenou Coatrieux,Jean-Louis Coatrieux,Xu Ji,Liang Jiang,Yang Chen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103250-103250 被引量:8
标识
DOI:10.1016/j.media.2024.103250
摘要

Ischemic lesion segmentation and the time since stroke (TSS) onset classification from paired multi-modal MRI imaging of unwitnessed acute ischemic stroke (AIS) patients is crucial, which supports tissue plasminogen activator (tPA) thrombolysis decision-making. Deep learning methods demonstrate superiority in TSS classification. However, they often overfit task-irrelevant features due to insufficient paired labeled data, resulting in poor generalization. We observed that unpaired data are readily available and inherently carry task-relevant cues, but are less often considered and explored. Based on this, in this paper, we propose to fully excavate the potential of unpaired unlabeled data and use them to facilitate the downstream AIS analysis task. We first analyse the utility of features at the varied grain and propose a multi-grained contrastive learning (MGCL) framework to learn task-related prior representations from both coarse-grained and fine-grained levels. The former can learn global prior representations to enhance the location ability for the ischemic lesions and perceive the healthy surroundings, while the latter can learn local prior representations to enhance the perception ability for semantic relation between the ischemic lesion and other health regions. To better transfer and utilize the learned task-related representation, we designed a novel multi-task framework to simultaneously achieve ischemic lesion segmentation and TSS classification with limited labeled data. In addition, a multi-modal region-related feature fusion module is proposed to enable the feature correlation and synergy between multi-modal deep image features for more accurate TSS decision-making. Extensive experiments on the large-scale multi-center MRI dataset demonstrate the superiority of the proposed framework. Therefore, it is promising that it helps better stroke evaluation and treatment decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助ioo采纳,获得10
刚刚
刚刚
66发布了新的文献求助10
刚刚
zhj完成签到,获得积分10
刚刚
冰柠檬发布了新的文献求助10
1秒前
tyyyyyy发布了新的文献求助10
1秒前
duran完成签到,获得积分10
1秒前
jinze完成签到,获得积分10
1秒前
ding应助wz采纳,获得10
2秒前
Fool完成签到,获得积分20
2秒前
汉堡包应助破晓采纳,获得10
2秒前
WangY1263发布了新的文献求助10
2秒前
2秒前
超帅鸭子发布了新的文献求助10
3秒前
禾研发布了新的文献求助20
3秒前
yisen完成签到,获得积分10
3秒前
搜集达人应助黄启烽采纳,获得10
4秒前
坐标发布了新的文献求助10
4秒前
5秒前
酷波er应助Gasoline.采纳,获得10
5秒前
Hello应助浊酒采纳,获得10
5秒前
5秒前
6秒前
Vera完成签到,获得积分10
6秒前
芃芃野发布了新的文献求助30
6秒前
科研通AI6应助仙妮宝贝采纳,获得10
6秒前
ggg完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
intfrac完成签到,获得积分10
7秒前
海绵宝宝的做饭铲完成签到,获得积分10
8秒前
科研通AI6应助雪白的友安采纳,获得10
8秒前
9秒前
深情安青应助无足鸟采纳,获得10
9秒前
情怀应助做锤子的医学采纳,获得10
9秒前
猫儿发布了新的文献求助10
9秒前
温可可发布了新的文献求助10
10秒前
LILI2完成签到,获得积分10
10秒前
慕青应助风清扬采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467049
求助须知:如何正确求助?哪些是违规求助? 4570696
关于积分的说明 14326942
捐赠科研通 4497263
什么是DOI,文献DOI怎么找? 2463804
邀请新用户注册赠送积分活动 1452757
关于科研通互助平台的介绍 1427612