Multi-grained contrastive representation learning for label-efficient lesion segmentation and onset time classification of acute ischemic stroke

过度拟合 计算机科学 人工智能 分割 溶栓 模式识别(心理学) 特征学习 任务(项目管理) 特征(语言学) 机器学习 人工神经网络 医学 哲学 精神科 经济 管理 心肌梗塞 语言学
作者
Jiarui Sun,Yuhao Liu,Yan Xi,Gouenou Coatrieux,Jean-Louis Coatrieux,Xu Ji,Liang Jiang,Yang Chen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103250-103250 被引量:3
标识
DOI:10.1016/j.media.2024.103250
摘要

Ischemic lesion segmentation and the time since stroke (TSS) onset classification from paired multi-modal MRI imaging of unwitnessed acute ischemic stroke (AIS) patients is crucial, which supports tissue plasminogen activator (tPA) thrombolysis decision-making. Deep learning methods demonstrate superiority in TSS classification. However, they often overfit task-irrelevant features due to insufficient paired labeled data, resulting in poor generalization. We observed that unpaired data are readily available and inherently carry task-relevant cues, but are less often considered and explored. Based on this, in this paper, we propose to fully excavate the potential of unpaired unlabeled data and use them to facilitate the downstream AIS analysis task. We first analyse the utility of features at the varied grain and propose a multi-grained contrastive learning (MGCL) framework to learn task-related prior representations from both coarse-grained and fine-grained levels. The former can learn global prior representations to enhance the location ability for the ischemic lesions and perceive the healthy surroundings, while the latter can learn local prior representations to enhance the perception ability for semantic relation between the ischemic lesion and other health regions. To better transfer and utilize the learned task-related representation, we designed a novel multi-task framework to simultaneously achieve ischemic lesion segmentation and TSS classification with limited labeled data. In addition, a multi-modal region-related feature fusion module is proposed to enable the feature correlation and synergy between multi-modal deep image features for more accurate TSS decision-making. Extensive experiments on the large-scale multi-center MRI dataset demonstrate the superiority of the proposed framework. Therefore, it is promising that it helps better stroke evaluation and treatment decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泊頔完成签到,获得积分10
1秒前
lrq发布了新的文献求助10
2秒前
2秒前
wwl关闭了wwl文献求助
4秒前
mr_chxb82发布了新的文献求助10
4秒前
阿智完成签到,获得积分10
4秒前
大写的LV完成签到 ,获得积分10
5秒前
麦子发布了新的文献求助10
6秒前
852应助wbh采纳,获得10
7秒前
11秒前
lzx发布了新的文献求助10
12秒前
王彩香发布了新的文献求助10
13秒前
五六七发布了新的文献求助150
14秒前
14秒前
mr_chxb82完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
小二郎应助麦子采纳,获得10
16秒前
清脆凡阳完成签到 ,获得积分10
16秒前
香蕉觅云应助小晓采纳,获得10
17秒前
科研通AI2S应助wwl采纳,获得10
19秒前
22秒前
眉间尺完成签到,获得积分10
24秒前
DC发布了新的文献求助10
25秒前
我们发布了新的文献求助10
27秒前
贪玩的野狍子完成签到,获得积分20
28秒前
、、、完成签到,获得积分10
33秒前
lrq完成签到,获得积分10
35秒前
古月发布了新的文献求助10
35秒前
36秒前
五六七发布了新的文献求助10
38秒前
38秒前
css1997完成签到 ,获得积分10
40秒前
无限飞丹完成签到,获得积分10
40秒前
小饭完成签到,获得积分10
40秒前
Cl1audia发布了新的文献求助10
41秒前
所所应助木可采纳,获得10
41秒前
Gyro完成签到,获得积分10
43秒前
隐形曼青应助lzx采纳,获得10
43秒前
44秒前
体贴紫完成签到,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174