Multi-grained contrastive representation learning for label-efficient lesion segmentation and onset time classification of acute ischemic stroke

过度拟合 计算机科学 人工智能 分割 溶栓 模式识别(心理学) 特征学习 任务(项目管理) 特征(语言学) 机器学习 人工神经网络 医学 语言学 哲学 管理 精神科 心肌梗塞 经济
作者
Jiarui Sun,Yuhao Liu,Yan Xi,Gouenou Coatrieux,Jean-Louis Coatrieux,Xu Ji,Liang Jiang,Yang Chen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103250-103250 被引量:8
标识
DOI:10.1016/j.media.2024.103250
摘要

Ischemic lesion segmentation and the time since stroke (TSS) onset classification from paired multi-modal MRI imaging of unwitnessed acute ischemic stroke (AIS) patients is crucial, which supports tissue plasminogen activator (tPA) thrombolysis decision-making. Deep learning methods demonstrate superiority in TSS classification. However, they often overfit task-irrelevant features due to insufficient paired labeled data, resulting in poor generalization. We observed that unpaired data are readily available and inherently carry task-relevant cues, but are less often considered and explored. Based on this, in this paper, we propose to fully excavate the potential of unpaired unlabeled data and use them to facilitate the downstream AIS analysis task. We first analyse the utility of features at the varied grain and propose a multi-grained contrastive learning (MGCL) framework to learn task-related prior representations from both coarse-grained and fine-grained levels. The former can learn global prior representations to enhance the location ability for the ischemic lesions and perceive the healthy surroundings, while the latter can learn local prior representations to enhance the perception ability for semantic relation between the ischemic lesion and other health regions. To better transfer and utilize the learned task-related representation, we designed a novel multi-task framework to simultaneously achieve ischemic lesion segmentation and TSS classification with limited labeled data. In addition, a multi-modal region-related feature fusion module is proposed to enable the feature correlation and synergy between multi-modal deep image features for more accurate TSS decision-making. Extensive experiments on the large-scale multi-center MRI dataset demonstrate the superiority of the proposed framework. Therefore, it is promising that it helps better stroke evaluation and treatment decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangye发布了新的文献求助10
刚刚
刚刚
zho应助好大一只小坏蛋采纳,获得10
1秒前
77seven发布了新的文献求助10
2秒前
yy完成签到 ,获得积分20
2秒前
2秒前
sqw发布了新的文献求助10
3秒前
3秒前
Phuniabo完成签到,获得积分10
3秒前
Hello应助JM采纳,获得10
4秒前
梦寻希望完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
7秒前
皮皮发布了新的文献求助10
7秒前
7秒前
misa发布了新的文献求助10
8秒前
wzc完成签到,获得积分10
9秒前
ZZHh完成签到,获得积分20
9秒前
fbl完成签到,获得积分10
10秒前
10秒前
JamesPei应助悬铃木采纳,获得10
10秒前
Ava应助务实的羞花采纳,获得10
11秒前
oxear发布了新的文献求助10
11秒前
迷茫在天空的云完成签到,获得积分20
11秒前
11秒前
12秒前
Viki完成签到,获得积分10
12秒前
ding应助dn采纳,获得10
12秒前
芋头完成签到,获得积分10
12秒前
12秒前
搜集达人应助nni采纳,获得10
12秒前
ZZHh发布了新的文献求助10
12秒前
13秒前
lesliechan完成签到,获得积分10
13秒前
田様应助风趣的易真采纳,获得10
13秒前
14秒前
科目三应助地瓜采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589181
求助须知:如何正确求助?哪些是违规求助? 4673512
关于积分的说明 14790948
捐赠科研通 4627714
什么是DOI,文献DOI怎么找? 2532132
邀请新用户注册赠送积分活动 1500793
关于科研通互助平台的介绍 1468403