Steel surface defect detection algorithm in complex background scenarios

算法 曲面(拓扑) 计算机科学 数学 几何学
作者
BaiTing Zhao,YuRan Chen,XiaoFen Jia,TianBing Ma
出处
期刊:Measurement [Elsevier]
卷期号:237: 115189-115189 被引量:41
标识
DOI:10.1016/j.measurement.2024.115189
摘要

Detecting surface defects on steel poses a significant challenge attributed to factors such as poor contrast, diverse defect types, complex background clutter, and noise interference present in images of steel surface defects. Current detection techniques face challenges in quickly and accurately identifying defects within complex backgrounds. To address the deployment of high-precision detection models on edge devices with limited resources, particularly for identifying steel surface defects, this study introduces a Multi-Scale Adaptive Fusion (MSAF) YOLOv8n defect detection algorithm designed for complex backgrounds. This algorithm effectively balances detection speed and accuracy. Firstly, a Multi-Scale Adaptive Fusion Block (MS-AFB) is proposed for the extraction of multi-scale features. Secondly, a Dynamic Coordinate Attention Ghostconv Space Pooling Pyramid-fast Cross-stage Partial Convolutional (DCA-GSPPFCSPC) is devised to significantly improve detection accuracy. Furthermore, the detection head has been redesigned utilizing Lightweight Multi-scale Convolutional (LMSC) approach, and an Adaptive Pyramid Receptive Field Block (AP-RFB) has been introduced to improve the receptive field efficiently. Meanwhile, Normalized Weighted Distance (NWD) and Weighted Intersection over Union (WIoU) are employed as the boundary box loss functions, serving as substitutes for Complete Intersection over Union (CIoU) loss function with a ratio of 2:8. The experimental results obtained from the improved Northeastern University Defect Dataset (NEU-DET) dataset demonstrate that MSAF-YOLOv8n model, despite having 40.4 % of the parameters and 28.8 % of Floating Point Operations (FLOPs) of YOLOv8s, achieves a [email protected] that is 0.9 % higher than that of YOLOv8s. Additionally, MSAF-YOLOv8n demonstrates robust generalization capabilities in Pascal VOC2007, self-constructed datasets, and various other datasets. Subsequently, the model is implemented on embedded systems, namely Jeston TX2 NX and Orange Pi 5+, both of which demonstrate real-time detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助爱吃巧乐兹采纳,获得10
刚刚
犹豫酸奶发布了新的文献求助10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
需要论文应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
luhuitou应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
敬之发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
修辛完成签到 ,获得积分10
2秒前
棉花羊5041发布了新的文献求助10
3秒前
orixero应助Jeremy采纳,获得10
3秒前
史呆芬完成签到,获得积分10
4秒前
fishuae完成签到,获得积分20
4秒前
晨曦夕日完成签到,获得积分10
4秒前
阿白完成签到 ,获得积分10
4秒前
SHPING完成签到,获得积分10
4秒前
liu发布了新的文献求助10
5秒前
芍药完成签到,获得积分10
5秒前
朱志伟完成签到,获得积分10
5秒前
Xia完成签到,获得积分10
5秒前
5秒前
dd完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594