Steel surface defect detection algorithm in complex background scenarios

算法 曲面(拓扑) 计算机科学 数学 几何学
作者
BaiTing Zhao,YuRan Chen,XiaoFen Jia,TianBing Ma
出处
期刊:Measurement [Elsevier BV]
卷期号:237: 115189-115189 被引量:22
标识
DOI:10.1016/j.measurement.2024.115189
摘要

Detecting surface defects on steel poses a significant challenge attributed to factors such as poor contrast, diverse defect types, complex background clutter, and noise interference present in images of steel surface defects. Current detection techniques face challenges in quickly and accurately identifying defects within complex backgrounds. To address the deployment of high-precision detection models on edge devices with limited resources, particularly for identifying steel surface defects, this study introduces a Multi-Scale Adaptive Fusion (MSAF) YOLOv8n defect detection algorithm designed for complex backgrounds. This algorithm effectively balances detection speed and accuracy. Firstly, a Multi-Scale Adaptive Fusion Block (MS-AFB) is proposed for the extraction of multi-scale features. Secondly, a Dynamic Coordinate Attention Ghostconv Space Pooling Pyramid-fast Cross-stage Partial Convolutional (DCA-GSPPFCSPC) is devised to significantly improve detection accuracy. Furthermore, the detection head has been redesigned utilizing Lightweight Multi-scale Convolutional (LMSC) approach, and an Adaptive Pyramid Receptive Field Block (AP-RFB) has been introduced to improve the receptive field efficiently. Meanwhile, Normalized Weighted Distance (NWD) and Weighted Intersection over Union (WIoU) are employed as the boundary box loss functions, serving as substitutes for Complete Intersection over Union (CIoU) loss function with a ratio of 2:8. The experimental results obtained from the improved Northeastern University Defect Dataset (NEU-DET) dataset demonstrate that MSAF-YOLOv8n model, despite having 40.4 % of the parameters and 28.8 % of Floating Point Operations (FLOPs) of YOLOv8s, achieves a [email protected] that is 0.9 % higher than that of YOLOv8s. Additionally, MSAF-YOLOv8n demonstrates robust generalization capabilities in Pascal VOC2007, self-constructed datasets, and various other datasets. Subsequently, the model is implemented on embedded systems, namely Jeston TX2 NX and Orange Pi 5+, both of which demonstrate real-time detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术裁缝发布了新的文献求助10
刚刚
连冬萱发布了新的文献求助10
刚刚
ruby完成签到,获得积分10
刚刚
大魔王完成签到 ,获得积分10
1秒前
zhang完成签到,获得积分10
1秒前
YW发布了新的文献求助30
1秒前
xg发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
踏实绮露完成签到 ,获得积分10
5秒前
5秒前
iam小羊人完成签到,获得积分20
6秒前
6秒前
7秒前
失眠无声完成签到,获得积分10
7秒前
Jiang完成签到,获得积分10
8秒前
大模型应助称心的乘云采纳,获得10
8秒前
桐桐应助lw采纳,获得10
9秒前
9秒前
Hello应助连冬萱采纳,获得30
10秒前
10秒前
11秒前
Rain_BJ发布了新的文献求助10
11秒前
Carolin完成签到,获得积分10
12秒前
孙宗帅发布了新的文献求助10
12秒前
12秒前
iam小羊人发布了新的文献求助20
12秒前
13秒前
下雨天睡个懒觉完成签到,获得积分10
14秒前
丘比特应助强壮的美女采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
认真灯泡完成签到,获得积分10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
子车茗应助科研通管家采纳,获得30
15秒前
科目三应助科研通管家采纳,获得10
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702