Steel surface defect detection algorithm in complex background scenarios

算法 曲面(拓扑) 计算机科学 数学 几何学
作者
BaiTing Zhao,YuRan Chen,XiaoFen Jia,TianBing Ma
出处
期刊:Measurement [Elsevier]
卷期号:237: 115189-115189 被引量:41
标识
DOI:10.1016/j.measurement.2024.115189
摘要

Detecting surface defects on steel poses a significant challenge attributed to factors such as poor contrast, diverse defect types, complex background clutter, and noise interference present in images of steel surface defects. Current detection techniques face challenges in quickly and accurately identifying defects within complex backgrounds. To address the deployment of high-precision detection models on edge devices with limited resources, particularly for identifying steel surface defects, this study introduces a Multi-Scale Adaptive Fusion (MSAF) YOLOv8n defect detection algorithm designed for complex backgrounds. This algorithm effectively balances detection speed and accuracy. Firstly, a Multi-Scale Adaptive Fusion Block (MS-AFB) is proposed for the extraction of multi-scale features. Secondly, a Dynamic Coordinate Attention Ghostconv Space Pooling Pyramid-fast Cross-stage Partial Convolutional (DCA-GSPPFCSPC) is devised to significantly improve detection accuracy. Furthermore, the detection head has been redesigned utilizing Lightweight Multi-scale Convolutional (LMSC) approach, and an Adaptive Pyramid Receptive Field Block (AP-RFB) has been introduced to improve the receptive field efficiently. Meanwhile, Normalized Weighted Distance (NWD) and Weighted Intersection over Union (WIoU) are employed as the boundary box loss functions, serving as substitutes for Complete Intersection over Union (CIoU) loss function with a ratio of 2:8. The experimental results obtained from the improved Northeastern University Defect Dataset (NEU-DET) dataset demonstrate that MSAF-YOLOv8n model, despite having 40.4 % of the parameters and 28.8 % of Floating Point Operations (FLOPs) of YOLOv8s, achieves a [email protected] that is 0.9 % higher than that of YOLOv8s. Additionally, MSAF-YOLOv8n demonstrates robust generalization capabilities in Pascal VOC2007, self-constructed datasets, and various other datasets. Subsequently, the model is implemented on embedded systems, namely Jeston TX2 NX and Orange Pi 5+, both of which demonstrate real-time detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李扒皮发布了新的文献求助10
1秒前
1秒前
1秒前
田様应助HHH采纳,获得10
1秒前
每天都想吃东西完成签到 ,获得积分10
1秒前
7bruce完成签到,获得积分10
2秒前
大个应助纪糜采纳,获得10
2秒前
顺心夜南应助萝卜干采纳,获得50
2秒前
Yamsh完成签到,获得积分20
3秒前
悦己发布了新的文献求助30
3秒前
zh20130完成签到,获得积分10
3秒前
3秒前
lll发布了新的文献求助10
3秒前
没天赋发布了新的文献求助10
4秒前
鱼圆杂铺发布了新的文献求助10
4秒前
4秒前
啦啦啦123发布了新的文献求助10
4秒前
善学以致用应助111采纳,获得10
5秒前
5秒前
5秒前
NETO完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
如意白易发布了新的文献求助10
5秒前
烟花应助Robbie采纳,获得10
5秒前
英俊的铭应助肉鸡采纳,获得10
6秒前
6秒前
cy5982发布了新的文献求助10
7秒前
花根发布了新的文献求助10
7秒前
power完成签到,获得积分10
8秒前
茗泠发布了新的文献求助10
8秒前
9秒前
9秒前
HHH完成签到,获得积分10
10秒前
嘻嘻发布了新的文献求助30
10秒前
luchang123qq发布了新的文献求助200
11秒前
11秒前
没天赋完成签到,获得积分10
11秒前
科研通AI6应助自信晟睿采纳,获得10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099