Steel surface defect detection algorithm in complex background scenarios

算法 曲面(拓扑) 计算机科学 数学 几何学
作者
BaiTing Zhao,YuRan Chen,XiaoFen Jia,TianBing Ma
出处
期刊:Measurement [Elsevier]
卷期号:237: 115189-115189 被引量:22
标识
DOI:10.1016/j.measurement.2024.115189
摘要

Detecting surface defects on steel poses a significant challenge attributed to factors such as poor contrast, diverse defect types, complex background clutter, and noise interference present in images of steel surface defects. Current detection techniques face challenges in quickly and accurately identifying defects within complex backgrounds. To address the deployment of high-precision detection models on edge devices with limited resources, particularly for identifying steel surface defects, this study introduces a Multi-Scale Adaptive Fusion (MSAF) YOLOv8n defect detection algorithm designed for complex backgrounds. This algorithm effectively balances detection speed and accuracy. Firstly, a Multi-Scale Adaptive Fusion Block (MS-AFB) is proposed for the extraction of multi-scale features. Secondly, a Dynamic Coordinate Attention Ghostconv Space Pooling Pyramid-fast Cross-stage Partial Convolutional (DCA-GSPPFCSPC) is devised to significantly improve detection accuracy. Furthermore, the detection head has been redesigned utilizing Lightweight Multi-scale Convolutional (LMSC) approach, and an Adaptive Pyramid Receptive Field Block (AP-RFB) has been introduced to improve the receptive field efficiently. Meanwhile, Normalized Weighted Distance (NWD) and Weighted Intersection over Union (WIoU) are employed as the boundary box loss functions, serving as substitutes for Complete Intersection over Union (CIoU) loss function with a ratio of 2:8. The experimental results obtained from the improved Northeastern University Defect Dataset (NEU-DET) dataset demonstrate that MSAF-YOLOv8n model, despite having 40.4 % of the parameters and 28.8 % of Floating Point Operations (FLOPs) of YOLOv8s, achieves a [email protected] that is 0.9 % higher than that of YOLOv8s. Additionally, MSAF-YOLOv8n demonstrates robust generalization capabilities in Pascal VOC2007, self-constructed datasets, and various other datasets. Subsequently, the model is implemented on embedded systems, namely Jeston TX2 NX and Orange Pi 5+, both of which demonstrate real-time detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的匪完成签到 ,获得积分10
1秒前
李健的小迷弟应助qiuxiu采纳,获得10
2秒前
4秒前
Cloud发布了新的文献求助10
4秒前
李健应助等待的若采纳,获得10
6秒前
光亮妙之完成签到,获得积分10
6秒前
壮观沉鱼发布了新的文献求助10
6秒前
7秒前
斯文败类应助Kylin采纳,获得10
8秒前
英姑应助曾经的溪流采纳,获得10
9秒前
11秒前
疯狂的天宇完成签到,获得积分10
11秒前
拼搏的澜发布了新的文献求助10
12秒前
上官若男应助大喜子采纳,获得10
13秒前
Silhouettes发布了新的文献求助20
13秒前
pokexuejiao发布了新的文献求助10
14秒前
帽子戏法应助splemeth采纳,获得20
14秒前
潘道士完成签到 ,获得积分10
15秒前
Grant完成签到 ,获得积分10
16秒前
贪玩的秋柔完成签到,获得积分10
17秒前
大模型应助吃猫的鱼采纳,获得10
18秒前
18秒前
18秒前
科研通AI6应助zsp采纳,获得10
18秒前
Terahertz完成签到 ,获得积分10
19秒前
甜甜嘉熙完成签到,获得积分10
20秒前
saflgf完成签到,获得积分10
21秒前
拼搏的澜完成签到,获得积分10
21秒前
悄悄发布了新的文献求助50
21秒前
二舅司机完成签到,获得积分10
22秒前
优美一鸣发布了新的文献求助10
22秒前
哈哈完成签到 ,获得积分10
22秒前
23秒前
25秒前
iVANPENNY发布了新的文献求助10
25秒前
研友_VZG7GZ应助敲木鱼采纳,获得10
25秒前
zlf完成签到,获得积分10
26秒前
Silhouettes完成签到,获得积分20
26秒前
迪克bin发布了新的文献求助10
27秒前
左眼天堂完成签到,获得积分10
27秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384713
求助须知:如何正确求助?哪些是违规求助? 4507566
关于积分的说明 14028354
捐赠科研通 4417204
什么是DOI,文献DOI怎么找? 2426357
邀请新用户注册赠送积分活动 1419123
关于科研通互助平台的介绍 1397426