Steel surface defect detection algorithm in complex background scenarios

算法 曲面(拓扑) 计算机科学 数学 几何学
作者
BaiTing Zhao,YuRan Chen,XiaoFen Jia,TianBing Ma
出处
期刊:Measurement [Elsevier]
卷期号:237: 115189-115189 被引量:22
标识
DOI:10.1016/j.measurement.2024.115189
摘要

Detecting surface defects on steel poses a significant challenge attributed to factors such as poor contrast, diverse defect types, complex background clutter, and noise interference present in images of steel surface defects. Current detection techniques face challenges in quickly and accurately identifying defects within complex backgrounds. To address the deployment of high-precision detection models on edge devices with limited resources, particularly for identifying steel surface defects, this study introduces a Multi-Scale Adaptive Fusion (MSAF) YOLOv8n defect detection algorithm designed for complex backgrounds. This algorithm effectively balances detection speed and accuracy. Firstly, a Multi-Scale Adaptive Fusion Block (MS-AFB) is proposed for the extraction of multi-scale features. Secondly, a Dynamic Coordinate Attention Ghostconv Space Pooling Pyramid-fast Cross-stage Partial Convolutional (DCA-GSPPFCSPC) is devised to significantly improve detection accuracy. Furthermore, the detection head has been redesigned utilizing Lightweight Multi-scale Convolutional (LMSC) approach, and an Adaptive Pyramid Receptive Field Block (AP-RFB) has been introduced to improve the receptive field efficiently. Meanwhile, Normalized Weighted Distance (NWD) and Weighted Intersection over Union (WIoU) are employed as the boundary box loss functions, serving as substitutes for Complete Intersection over Union (CIoU) loss function with a ratio of 2:8. The experimental results obtained from the improved Northeastern University Defect Dataset (NEU-DET) dataset demonstrate that MSAF-YOLOv8n model, despite having 40.4 % of the parameters and 28.8 % of Floating Point Operations (FLOPs) of YOLOv8s, achieves a [email protected] that is 0.9 % higher than that of YOLOv8s. Additionally, MSAF-YOLOv8n demonstrates robust generalization capabilities in Pascal VOC2007, self-constructed datasets, and various other datasets. Subsequently, the model is implemented on embedded systems, namely Jeston TX2 NX and Orange Pi 5+, both of which demonstrate real-time detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WERIGHT发布了新的文献求助30
刚刚
franklylyly完成签到,获得积分10
刚刚
领导范儿应助微笑的从安采纳,获得10
1秒前
2秒前
李爱国应助bb采纳,获得10
6秒前
Wangpengfei完成签到,获得积分10
9秒前
9秒前
汉堡包应助国医大师陈XX采纳,获得10
11秒前
ShawnJohn完成签到,获得积分10
12秒前
1234567发布了新的文献求助10
12秒前
13秒前
15秒前
小肥仔完成签到,获得积分10
16秒前
ma发布了新的文献求助10
16秒前
繁荣的凡完成签到 ,获得积分10
17秒前
rouxi发布了新的文献求助10
18秒前
18秒前
计划明天炸地球完成签到,获得积分10
18秒前
19秒前
传奇3应助坚强的严青采纳,获得10
19秒前
白星辰完成签到 ,获得积分10
20秒前
静待花开完成签到 ,获得积分10
20秒前
21秒前
disjustar完成签到,获得积分0
24秒前
赵卫星发布了新的文献求助10
26秒前
27秒前
科目三应助ma采纳,获得10
27秒前
CodeCraft应助慈祥的惜霜采纳,获得10
28秒前
1234567发布了新的文献求助10
29秒前
30秒前
微笑的从安完成签到,获得积分10
30秒前
30秒前
32秒前
Tracy麦子发布了新的文献求助10
32秒前
赵卫星完成签到,获得积分10
36秒前
阿姊完成签到 ,获得积分10
36秒前
健忘怜雪发布了新的文献求助10
37秒前
废废废完成签到,获得积分10
38秒前
可爱的函函应助菜就多练采纳,获得10
39秒前
慕青应助Galato采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373655
求助须知:如何正确求助?哪些是违规求助? 4499675
关于积分的说明 14007024
捐赠科研通 4406529
什么是DOI,文献DOI怎么找? 2420537
邀请新用户注册赠送积分活动 1413340
关于科研通互助平台的介绍 1389891