亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Steel surface defect detection algorithm in complex background scenarios

算法 曲面(拓扑) 计算机科学 数学 几何学
作者
BaiTing Zhao,Y. C. Chen,XiaoFen Jia,TianBing Ma
出处
期刊:Measurement [Elsevier]
卷期号:237: 115189-115189 被引量:4
标识
DOI:10.1016/j.measurement.2024.115189
摘要

Detecting surface defects on steel poses a significant challenge attributed to factors such as poor contrast, diverse defect types, complex background clutter, and noise interference present in images of steel surface defects. Current detection techniques face challenges in quickly and accurately identifying defects within complex backgrounds. To address the deployment of high-precision detection models on edge devices with limited resources, particularly for identifying steel surface defects, this study introduces a Multi-Scale Adaptive Fusion (MSAF) YOLOv8n defect detection algorithm designed for complex backgrounds. This algorithm effectively balances detection speed and accuracy. Firstly, a Multi-Scale Adaptive Fusion Block (MS-AFB) is proposed for the extraction of multi-scale features. Secondly, a Dynamic Coordinate Attention Ghostconv Space Pooling Pyramid-fast Cross-stage Partial Convolutional (DCA-GSPPFCSPC) is devised to significantly improve detection accuracy. Furthermore, the detection head has been redesigned utilizing Lightweight Multi-scale Convolutional (LMSC) approach, and an Adaptive Pyramid Receptive Field Block (AP-RFB) has been introduced to improve the receptive field efficiently. Meanwhile, Normalized Weighted Distance (NWD) and Weighted Intersection over Union (WIoU) are employed as the boundary box loss functions, serving as substitutes for Complete Intersection over Union (CIoU) loss function with a ratio of 2:8. The experimental results obtained from the improved Northeastern University Defect Dataset (NEU-DET) dataset demonstrate that MSAF-YOLOv8n model, despite having 40.4 % of the parameters and 28.8 % of Floating Point Operations (FLOPs) of YOLOv8s, achieves a [email protected] that is 0.9 % higher than that of YOLOv8s. Additionally, MSAF-YOLOv8n demonstrates robust generalization capabilities in Pascal VOC2007, self-constructed datasets, and various other datasets. Subsequently, the model is implemented on embedded systems, namely Jeston TX2 NX and Orange Pi 5+, both of which demonstrate real-time detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nature完成签到,获得积分10
5秒前
22秒前
手术刀完成签到 ,获得积分10
25秒前
汉堡包应助蒲雨采纳,获得10
45秒前
谦让的雅青完成签到 ,获得积分10
53秒前
56秒前
充电宝应助科研通管家采纳,获得10
56秒前
56秒前
58秒前
59秒前
Murphy发布了新的文献求助30
1分钟前
1分钟前
1分钟前
十七发布了新的文献求助10
1分钟前
Murphy完成签到,获得积分10
1分钟前
SciGPT应助迪丽盐巴采纳,获得10
1分钟前
MGXL完成签到 ,获得积分10
1分钟前
爱听歌的紫菜完成签到,获得积分10
1分钟前
2分钟前
蒲雨发布了新的文献求助10
2分钟前
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
迪丽盐巴发布了新的文献求助10
2分钟前
陆上飞完成签到,获得积分10
2分钟前
FashionBoy应助摆易欢采纳,获得10
2分钟前
我是老大应助香蕉念薇采纳,获得10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
3分钟前
杳鸢应助shuke采纳,获得30
3分钟前
嬴胡亥发布了新的文献求助10
3分钟前
摆易欢发布了新的文献求助10
3分钟前
碧蓝可仁完成签到 ,获得积分10
3分钟前
领导范儿应助ytx采纳,获得10
3分钟前
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
ytx发布了新的文献求助10
3分钟前
Orange应助HelenZ采纳,获得10
4分钟前
4分钟前
摆易欢完成签到,获得积分10
4分钟前
HelenZ发布了新的文献求助10
4分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491339
求助须知:如何正确求助?哪些是违规求助? 3077921
关于积分的说明 9151234
捐赠科研通 2770492
什么是DOI,文献DOI怎么找? 1520508
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298