Steel surface defect detection algorithm in complex background scenarios

算法 曲面(拓扑) 计算机科学 数学 几何学
作者
BaiTing Zhao,YuRan Chen,XiaoFen Jia,TianBing Ma
出处
期刊:Measurement [Elsevier]
卷期号:237: 115189-115189 被引量:41
标识
DOI:10.1016/j.measurement.2024.115189
摘要

Detecting surface defects on steel poses a significant challenge attributed to factors such as poor contrast, diverse defect types, complex background clutter, and noise interference present in images of steel surface defects. Current detection techniques face challenges in quickly and accurately identifying defects within complex backgrounds. To address the deployment of high-precision detection models on edge devices with limited resources, particularly for identifying steel surface defects, this study introduces a Multi-Scale Adaptive Fusion (MSAF) YOLOv8n defect detection algorithm designed for complex backgrounds. This algorithm effectively balances detection speed and accuracy. Firstly, a Multi-Scale Adaptive Fusion Block (MS-AFB) is proposed for the extraction of multi-scale features. Secondly, a Dynamic Coordinate Attention Ghostconv Space Pooling Pyramid-fast Cross-stage Partial Convolutional (DCA-GSPPFCSPC) is devised to significantly improve detection accuracy. Furthermore, the detection head has been redesigned utilizing Lightweight Multi-scale Convolutional (LMSC) approach, and an Adaptive Pyramid Receptive Field Block (AP-RFB) has been introduced to improve the receptive field efficiently. Meanwhile, Normalized Weighted Distance (NWD) and Weighted Intersection over Union (WIoU) are employed as the boundary box loss functions, serving as substitutes for Complete Intersection over Union (CIoU) loss function with a ratio of 2:8. The experimental results obtained from the improved Northeastern University Defect Dataset (NEU-DET) dataset demonstrate that MSAF-YOLOv8n model, despite having 40.4 % of the parameters and 28.8 % of Floating Point Operations (FLOPs) of YOLOv8s, achieves a [email protected] that is 0.9 % higher than that of YOLOv8s. Additionally, MSAF-YOLOv8n demonstrates robust generalization capabilities in Pascal VOC2007, self-constructed datasets, and various other datasets. Subsequently, the model is implemented on embedded systems, namely Jeston TX2 NX and Orange Pi 5+, both of which demonstrate real-time detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shadow完成签到,获得积分10
刚刚
victory_liu完成签到,获得积分10
2秒前
三百一十四完成签到 ,获得积分10
2秒前
无奈的书琴完成签到,获得积分10
4秒前
小明完成签到 ,获得积分10
6秒前
Michael完成签到 ,获得积分10
9秒前
小玲子完成签到 ,获得积分10
16秒前
悠然完成签到,获得积分10
22秒前
如愿常隐行完成签到 ,获得积分10
23秒前
宝可梦大师完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
llhh2024完成签到,获得积分10
25秒前
白日焰火完成签到 ,获得积分10
25秒前
vinni完成签到 ,获得积分10
27秒前
缥缈的闭月完成签到,获得积分10
30秒前
爱我不上火完成签到 ,获得积分10
33秒前
OOOZZZ应助科研通管家采纳,获得10
33秒前
ceeray23应助科研通管家采纳,获得10
33秒前
ceeray23应助科研通管家采纳,获得10
33秒前
wkyt完成签到 ,获得积分10
36秒前
胡明轩完成签到 ,获得积分10
39秒前
葡萄小伊ovo完成签到 ,获得积分10
43秒前
Sylvia_J完成签到 ,获得积分10
44秒前
安子完成签到 ,获得积分10
44秒前
wy.he应助害羞山菡采纳,获得10
45秒前
椿·完成签到 ,获得积分10
46秒前
吊炸天完成签到 ,获得积分10
46秒前
青檬完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
52秒前
fxy完成签到 ,获得积分10
53秒前
消摇完成签到,获得积分10
54秒前
量子星尘发布了新的文献求助10
1分钟前
优雅的平安完成签到 ,获得积分10
1分钟前
慕容博完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
舒服的月饼完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
无辜茗完成签到 ,获得积分10
1分钟前
tranphucthinh完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651420
求助须知:如何正确求助?哪些是违规求助? 4784722
关于积分的说明 15053723
捐赠科研通 4810070
什么是DOI,文献DOI怎么找? 2572937
邀请新用户注册赠送积分活动 1528830
关于科研通互助平台的介绍 1487848