Steel surface defect detection algorithm in complex background scenarios

算法 曲面(拓扑) 计算机科学 数学 几何学
作者
BaiTing Zhao,YuRan Chen,XiaoFen Jia,TianBing Ma
出处
期刊:Measurement [Elsevier BV]
卷期号:237: 115189-115189 被引量:22
标识
DOI:10.1016/j.measurement.2024.115189
摘要

Detecting surface defects on steel poses a significant challenge attributed to factors such as poor contrast, diverse defect types, complex background clutter, and noise interference present in images of steel surface defects. Current detection techniques face challenges in quickly and accurately identifying defects within complex backgrounds. To address the deployment of high-precision detection models on edge devices with limited resources, particularly for identifying steel surface defects, this study introduces a Multi-Scale Adaptive Fusion (MSAF) YOLOv8n defect detection algorithm designed for complex backgrounds. This algorithm effectively balances detection speed and accuracy. Firstly, a Multi-Scale Adaptive Fusion Block (MS-AFB) is proposed for the extraction of multi-scale features. Secondly, a Dynamic Coordinate Attention Ghostconv Space Pooling Pyramid-fast Cross-stage Partial Convolutional (DCA-GSPPFCSPC) is devised to significantly improve detection accuracy. Furthermore, the detection head has been redesigned utilizing Lightweight Multi-scale Convolutional (LMSC) approach, and an Adaptive Pyramid Receptive Field Block (AP-RFB) has been introduced to improve the receptive field efficiently. Meanwhile, Normalized Weighted Distance (NWD) and Weighted Intersection over Union (WIoU) are employed as the boundary box loss functions, serving as substitutes for Complete Intersection over Union (CIoU) loss function with a ratio of 2:8. The experimental results obtained from the improved Northeastern University Defect Dataset (NEU-DET) dataset demonstrate that MSAF-YOLOv8n model, despite having 40.4 % of the parameters and 28.8 % of Floating Point Operations (FLOPs) of YOLOv8s, achieves a [email protected] that is 0.9 % higher than that of YOLOv8s. Additionally, MSAF-YOLOv8n demonstrates robust generalization capabilities in Pascal VOC2007, self-constructed datasets, and various other datasets. Subsequently, the model is implemented on embedded systems, namely Jeston TX2 NX and Orange Pi 5+, both of which demonstrate real-time detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh发布了新的文献求助10
2秒前
小马甲应助bjyx采纳,获得30
3秒前
3秒前
5秒前
疯狂吃辣完成签到,获得积分10
5秒前
好单纯发布了新的文献求助10
6秒前
6秒前
生动的问旋完成签到,获得积分10
6秒前
6秒前
8秒前
不吃橘子发布了新的文献求助10
8秒前
9秒前
jianwu完成签到,获得积分10
9秒前
脑洞疼应助seven采纳,获得10
9秒前
10秒前
霜月十四完成签到,获得积分10
10秒前
瞬华发布了新的文献求助10
11秒前
11秒前
hyy发布了新的文献求助10
12秒前
12秒前
13秒前
希望天下0贩的0应助Ansels采纳,获得10
14秒前
刘旭阳发布了新的文献求助10
14秒前
sxm发布了新的文献求助30
15秒前
15秒前
16秒前
量子星尘发布了新的文献求助50
16秒前
16秒前
17秒前
yhm7426发布了新的文献求助10
17秒前
好单纯完成签到,获得积分10
17秒前
方俊驰发布了新的文献求助10
17秒前
华仔应助一块巧克力采纳,获得10
17秒前
18秒前
可靠早晨发布了新的文献求助10
18秒前
hibeauty完成签到,获得积分20
19秒前
19秒前
19秒前
shawn完成签到,获得积分10
20秒前
所所应助777采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577717
求助须知:如何正确求助?哪些是违规求助? 3996873
关于积分的说明 12373702
捐赠科研通 3670822
什么是DOI,文献DOI怎么找? 2023094
邀请新用户注册赠送积分活动 1057164
科研通“疑难数据库(出版商)”最低求助积分说明 944121