Steel surface defect detection algorithm in complex background scenarios

算法 曲面(拓扑) 计算机科学 数学 几何学
作者
BaiTing Zhao,YuRan Chen,XiaoFen Jia,TianBing Ma
出处
期刊:Measurement [Elsevier]
卷期号:237: 115189-115189 被引量:22
标识
DOI:10.1016/j.measurement.2024.115189
摘要

Detecting surface defects on steel poses a significant challenge attributed to factors such as poor contrast, diverse defect types, complex background clutter, and noise interference present in images of steel surface defects. Current detection techniques face challenges in quickly and accurately identifying defects within complex backgrounds. To address the deployment of high-precision detection models on edge devices with limited resources, particularly for identifying steel surface defects, this study introduces a Multi-Scale Adaptive Fusion (MSAF) YOLOv8n defect detection algorithm designed for complex backgrounds. This algorithm effectively balances detection speed and accuracy. Firstly, a Multi-Scale Adaptive Fusion Block (MS-AFB) is proposed for the extraction of multi-scale features. Secondly, a Dynamic Coordinate Attention Ghostconv Space Pooling Pyramid-fast Cross-stage Partial Convolutional (DCA-GSPPFCSPC) is devised to significantly improve detection accuracy. Furthermore, the detection head has been redesigned utilizing Lightweight Multi-scale Convolutional (LMSC) approach, and an Adaptive Pyramid Receptive Field Block (AP-RFB) has been introduced to improve the receptive field efficiently. Meanwhile, Normalized Weighted Distance (NWD) and Weighted Intersection over Union (WIoU) are employed as the boundary box loss functions, serving as substitutes for Complete Intersection over Union (CIoU) loss function with a ratio of 2:8. The experimental results obtained from the improved Northeastern University Defect Dataset (NEU-DET) dataset demonstrate that MSAF-YOLOv8n model, despite having 40.4 % of the parameters and 28.8 % of Floating Point Operations (FLOPs) of YOLOv8s, achieves a [email protected] that is 0.9 % higher than that of YOLOv8s. Additionally, MSAF-YOLOv8n demonstrates robust generalization capabilities in Pascal VOC2007, self-constructed datasets, and various other datasets. Subsequently, the model is implemented on embedded systems, namely Jeston TX2 NX and Orange Pi 5+, both of which demonstrate real-time detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失去记忆的金鱼完成签到,获得积分10
刚刚
寒冷念文发布了新的文献求助30
刚刚
1秒前
芋圆完成签到,获得积分10
2秒前
迷路大白发布了新的文献求助30
2秒前
lhy1150469792发布了新的文献求助30
2秒前
cc发布了新的文献求助10
2秒前
bo发布了新的文献求助30
2秒前
8R60d8应助故意的煎蛋采纳,获得10
2秒前
开心蛋挞发布了新的文献求助10
2秒前
3秒前
shea发布了新的文献求助10
3秒前
4秒前
seven发布了新的文献求助10
5秒前
Lucas应助芭乐采纳,获得10
5秒前
6秒前
科研通AI6应助QPYY采纳,获得10
6秒前
6秒前
雪白的小土豆完成签到,获得积分10
6秒前
keke发布了新的文献求助10
7秒前
neuroQi发布了新的文献求助10
7秒前
芋圆发布了新的文献求助10
7秒前
thm完成签到,获得积分10
9秒前
领导范儿应助开心蛋挞采纳,获得10
9秒前
英姑应助seven采纳,获得10
10秒前
10秒前
10秒前
无极微光应助SS是采纳,获得20
11秒前
华仔应助elisa828采纳,获得10
11秒前
12秒前
科研通AI6应助长情访梦采纳,获得10
12秒前
12秒前
14秒前
SY完成签到,获得积分10
14秒前
15秒前
shea完成签到,获得积分10
15秒前
mm发布了新的文献求助10
16秒前
小小的手心完成签到,获得积分10
16秒前
17秒前
joy发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521185
求助须知:如何正确求助?哪些是违规求助? 4612661
关于积分的说明 14534683
捐赠科研通 4550154
什么是DOI,文献DOI怎么找? 2493511
邀请新用户注册赠送积分活动 1474660
关于科研通互助平台的介绍 1446156