LightCF-Net: A Lightweight Long-Range Context Fusion Network for Real-Time Polyp Segmentation

计算机科学 分割 人工智能 编码器 背景(考古学) 瓶颈 图像分割 市场细分 棱锥(几何) 计算机视觉 模式识别(心理学) 嵌入式系统 光学 物理 业务 古生物学 操作系统 营销 生物
作者
Zhanlin Ji,Xiaoyu Li,Jianuo Liu,Rui Chen,Qinping Liao,Tao Lyu,Li Zhao
出处
期刊:Bioengineering [MDPI AG]
卷期号:11 (6): 545-545 被引量:4
标识
DOI:10.3390/bioengineering11060545
摘要

Automatically segmenting polyps from colonoscopy videos is crucial for developing computer-assisted diagnostic systems for colorectal cancer. Existing automatic polyp segmentation methods often struggle to fulfill the real-time demands of clinical applications due to their substantial parameter count and computational load, especially those based on Transformer architectures. To tackle these challenges, a novel lightweight long-range context fusion network, named LightCF-Net, is proposed in this paper. This network attempts to model long-range spatial dependencies while maintaining real-time performance, to better distinguish polyps from background noise and thus improve segmentation accuracy. A novel Fusion Attention Encoder (FAEncoder) is designed in the proposed network, which integrates Large Kernel Attention (LKA) and channel attention mechanisms to extract deep representational features of polyps and unearth long-range dependencies. Furthermore, a newly designed Visual Attention Mamba module (VAM) is added to the skip connections, modeling long-range context dependencies in the encoder-extracted features and reducing background noise interference through the attention mechanism. Finally, a Pyramid Split Attention module (PSA) is used in the bottleneck layer to extract richer multi-scale contextual features. The proposed method was thoroughly evaluated on four renowned polyp segmentation datasets: Kvasir-SEG, CVC-ClinicDB, BKAI-IGH, and ETIS. Experimental findings demonstrate that the proposed method delivers higher segmentation accuracy in less time, consistently outperforming the most advanced lightweight polyp segmentation networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
許1111发布了新的文献求助10
1秒前
Alex发布了新的文献求助10
1秒前
harriet chen发布了新的文献求助10
1秒前
阿萨十大发布了新的文献求助10
1秒前
2秒前
华仔应助研友_8QxayZ采纳,获得10
2秒前
3秒前
help3q完成签到,获得积分10
4秒前
llh发布了新的文献求助10
4秒前
赘婿应助暮商零七采纳,获得10
4秒前
5秒前
怡然冷安完成签到,获得积分10
5秒前
5秒前
哈哈哈完成签到,获得积分10
5秒前
秋去去完成签到,获得积分10
6秒前
希望天下0贩的0应助Towne采纳,获得10
6秒前
7秒前
7秒前
李健应助CJN采纳,获得10
7秒前
lily完成签到,获得积分20
8秒前
流云发布了新的文献求助10
8秒前
April完成签到 ,获得积分10
8秒前
清秀橘子完成签到,获得积分10
8秒前
mika完成签到,获得积分10
8秒前
wuliumu完成签到,获得积分10
8秒前
9秒前
9秒前
lizhoukan1完成签到,获得积分10
9秒前
李爱国应助whisper采纳,获得10
9秒前
10秒前
李爱国应助Rgly采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
张靖松完成签到 ,获得积分10
13秒前
Owen应助雨碎寒江采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386