LightCF-Net: A Lightweight Long-Range Context Fusion Network for Real-Time Polyp Segmentation

计算机科学 分割 人工智能 编码器 背景(考古学) 瓶颈 图像分割 市场细分 棱锥(几何) 计算机视觉 模式识别(心理学) 嵌入式系统 光学 物理 业务 古生物学 操作系统 营销 生物
作者
Zhanlin Ji,Xiaoyu Li,Jianuo Liu,Rui Chen,Qinping Liao,Tao Lyu,Li Zhao
出处
期刊:Bioengineering [MDPI AG]
卷期号:11 (6): 545-545 被引量:4
标识
DOI:10.3390/bioengineering11060545
摘要

Automatically segmenting polyps from colonoscopy videos is crucial for developing computer-assisted diagnostic systems for colorectal cancer. Existing automatic polyp segmentation methods often struggle to fulfill the real-time demands of clinical applications due to their substantial parameter count and computational load, especially those based on Transformer architectures. To tackle these challenges, a novel lightweight long-range context fusion network, named LightCF-Net, is proposed in this paper. This network attempts to model long-range spatial dependencies while maintaining real-time performance, to better distinguish polyps from background noise and thus improve segmentation accuracy. A novel Fusion Attention Encoder (FAEncoder) is designed in the proposed network, which integrates Large Kernel Attention (LKA) and channel attention mechanisms to extract deep representational features of polyps and unearth long-range dependencies. Furthermore, a newly designed Visual Attention Mamba module (VAM) is added to the skip connections, modeling long-range context dependencies in the encoder-extracted features and reducing background noise interference through the attention mechanism. Finally, a Pyramid Split Attention module (PSA) is used in the bottleneck layer to extract richer multi-scale contextual features. The proposed method was thoroughly evaluated on four renowned polyp segmentation datasets: Kvasir-SEG, CVC-ClinicDB, BKAI-IGH, and ETIS. Experimental findings demonstrate that the proposed method delivers higher segmentation accuracy in less time, consistently outperforming the most advanced lightweight polyp segmentation networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助锅锅采纳,获得10
刚刚
1秒前
1秒前
1秒前
小猪发布了新的文献求助10
1秒前
呆萌的早晨完成签到,获得积分10
1秒前
科研通AI6应助超级佳倍采纳,获得10
2秒前
4秒前
丘比特应助文官采纳,获得10
4秒前
小小应助will采纳,获得10
4秒前
希望天下0贩的0应助ss采纳,获得10
4秒前
Dr_Zhang完成签到,获得积分10
5秒前
含蓄的海完成签到,获得积分10
5秒前
仁爱的梦曼完成签到 ,获得积分10
5秒前
风趣烤鸡发布了新的文献求助10
6秒前
haizz完成签到,获得积分10
7秒前
Orange应助yang采纳,获得10
8秒前
8秒前
香香发布了新的文献求助10
9秒前
9秒前
共享精神应助复杂梦安采纳,获得10
10秒前
10秒前
10秒前
搜集达人应助xio采纳,获得10
11秒前
wzf完成签到 ,获得积分10
11秒前
科研通AI6应助Logan采纳,获得10
11秒前
别当真发布了新的文献求助10
12秒前
12秒前
锦慜发布了新的文献求助10
12秒前
12秒前
Wind应助111采纳,获得10
13秒前
iNk应助你好采纳,获得10
14秒前
14秒前
15秒前
轶Y发布了新的文献求助10
15秒前
阔达宝莹发布了新的文献求助10
15秒前
wsqg123完成签到,获得积分10
16秒前
albert发布了新的文献求助10
17秒前
17秒前
Ava应助淡然的冷霜采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646