已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LightCF-Net: A Lightweight Long-Range Context Fusion Network for Real-Time Polyp Segmentation

计算机科学 分割 人工智能 编码器 背景(考古学) 瓶颈 图像分割 市场细分 棱锥(几何) 计算机视觉 模式识别(心理学) 嵌入式系统 光学 物理 业务 古生物学 操作系统 营销 生物
作者
Zhanlin Ji,Xiaoyu Li,Jianuo Liu,Rui Chen,Qinping Liao,Tao Lyu,Li Zhao
出处
期刊:Bioengineering [MDPI AG]
卷期号:11 (6): 545-545 被引量:4
标识
DOI:10.3390/bioengineering11060545
摘要

Automatically segmenting polyps from colonoscopy videos is crucial for developing computer-assisted diagnostic systems for colorectal cancer. Existing automatic polyp segmentation methods often struggle to fulfill the real-time demands of clinical applications due to their substantial parameter count and computational load, especially those based on Transformer architectures. To tackle these challenges, a novel lightweight long-range context fusion network, named LightCF-Net, is proposed in this paper. This network attempts to model long-range spatial dependencies while maintaining real-time performance, to better distinguish polyps from background noise and thus improve segmentation accuracy. A novel Fusion Attention Encoder (FAEncoder) is designed in the proposed network, which integrates Large Kernel Attention (LKA) and channel attention mechanisms to extract deep representational features of polyps and unearth long-range dependencies. Furthermore, a newly designed Visual Attention Mamba module (VAM) is added to the skip connections, modeling long-range context dependencies in the encoder-extracted features and reducing background noise interference through the attention mechanism. Finally, a Pyramid Split Attention module (PSA) is used in the bottleneck layer to extract richer multi-scale contextual features. The proposed method was thoroughly evaluated on four renowned polyp segmentation datasets: Kvasir-SEG, CVC-ClinicDB, BKAI-IGH, and ETIS. Experimental findings demonstrate that the proposed method delivers higher segmentation accuracy in less time, consistently outperforming the most advanced lightweight polyp segmentation networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助h2o采纳,获得10
刚刚
科研通AI6.1应助虚心飞鸟采纳,获得10
刚刚
李健的小迷弟应助向阳采纳,获得10
1秒前
褚幻香发布了新的文献求助10
4秒前
范范完成签到,获得积分20
5秒前
8秒前
Yusra完成签到 ,获得积分10
9秒前
不懈奋进应助LO7pM2采纳,获得30
10秒前
11秒前
蛋挞完成签到 ,获得积分10
11秒前
向阳完成签到,获得积分10
11秒前
455完成签到,获得积分10
12秒前
向阳发布了新的文献求助10
15秒前
Akim应助柚子采纳,获得10
16秒前
大模型应助PAPA采纳,获得10
17秒前
18秒前
Hello应助科研通管家采纳,获得10
19秒前
Hilda007应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
YifanWang应助科研通管家采纳,获得10
19秒前
Hilda007应助科研通管家采纳,获得10
19秒前
CCCheny应助科研通管家采纳,获得10
19秒前
YifanWang应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
20秒前
CCCheny应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
20秒前
隐形曼青应助科研通管家采纳,获得100
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得100
20秒前
Hello应助科研通管家采纳,获得10
20秒前
无极微光应助科研通管家采纳,获得20
20秒前
无极微光应助科研通管家采纳,获得20
20秒前
SciGPT应助科研通管家采纳,获得30
20秒前
SciGPT应助科研通管家采纳,获得30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938