流变学
面筋
淀粉
热的
化学
化学工程
材料科学
食品科学
复合材料
热力学
物理
工程类
标识
DOI:10.1016/j.ijbiomac.2024.132678
摘要
This study evaluated the effects of starch with varying degree of debranching on the rheological, thermal, and structural properties of heat-induced gluten gel. As the duration of starch debranching treatment increased from 0 to 8 h, the viscoelasticity of the gel containing debranched starch (DBS) improved. Compared with the gluten gel (G), the gel strength of the G + DBS (8 h) sample increased by 65.2 %. The degradation temperature of gluten was minimally affected by DBS, while the weight loss rate increased by 4.4 %. Furthermore, the α-helical structure of gluten decreased, concomitant with an increase in β-sheet content. Notably, DBS treated for 8 h exhibited more hydrogen bonds with the tyrosine of gluten and triggered disulfide bridge conformation to transition from g-g-g to t-g-g, thereby reducing the stability of the molecular conformation of gluten proteins, as evidenced by the decreased height and width of the molecular chains observed in atomic force microscopy images. Overall, the composite gel structure induced by DBS exhibited a more continuous and homogeneous owing to the improved compatibility between DBS and gluten proteins, favoring the formation of a robust gel. These findings provide valuable insights for utilizing DBS to enhance gluten gel properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI