How can SHAP (SHapley Additive exPlanations) interpretations improve deep learning based urban cellular automata model?

细胞自动机 计算机科学 人工智能 数学教育 理论计算机科学 数学
作者
Changlan Yang,Xuefeng Guan,Qingyang Xu,Weiran Xing,Xiaoyu Chen,Jinguo Chen,Peng Jia
出处
期刊:Computers, Environment and Urban Systems [Elsevier BV]
卷期号:111: 102133-102133 被引量:4
标识
DOI:10.1016/j.compenvurbsys.2024.102133
摘要

Interpretations of the urban cellular automata (CA) model aim to ensure that its predictive behaviors are consistent with real-world processes. Current urban CA interpretations have revealed the impacts of driving factors on land development suitability, or neighborhood effects and random perturbation on simulation results. However, three limitations remain unresolved: (1) the interpretations of deep learning (DL)-based urban CA are seldom integrated with the prerequired feature selection, (2) the input features from different urban CA modules are still explained by separate approaches, and (3) the interpretation results are rarely derived at the cell level to uncover spatially varying urban land development patterns. This study proposes a SHapley Additive exPlanations (SHAP)-based urban CA interpretation framework to address these challenges and improve urban CA. This framework uses model-level SHAP importance to identify dominant features from different modules for constructing the final simulation model. Then, cell-level SHAP importance is used to uncover spatially varying driving forces of urban expansion. The framework's effectiveness is rigorously tested and confirmed using a convolution neural network CA (CNN-CA) model for Dongguan City. The experimental results demonstrate that (1) SHAP-based model interpretation improves feature selection for DL-based urban CA. The figure of merit for CNN-CA calibrated using SHAP-based important features improves by 3%, outperforming the tested baseline methods. (2) SHAP measures the impacts of each feature from different CA modules in a whole. In this case, physical factors are much more important at the model level than proximity and accessibility factors, while neighborhood effect is the second most crucial factor. (3) Cell-level SHAP interpretations uncover spatially different urban land development patterns. For example, due to the extensive industrial land development in the northern Songshan Lake Zone, in the CNN-CA model, proximity to major roads within this region is associated with positive SHAP-based contribution share on cell-level urban expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dicy发布了新的文献求助10
刚刚
1秒前
高贵白凝发布了新的文献求助10
1秒前
charles发布了新的文献求助20
2秒前
DBY发布了新的文献求助10
3秒前
考虑考虑发布了新的文献求助10
4秒前
GET完成签到,获得积分10
5秒前
QQQ完成签到,获得积分10
5秒前
6秒前
6秒前
司空豁发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
10秒前
嘘嘘发布了新的文献求助10
11秒前
12秒前
科研通AI5应助幽壑之潜蛟采纳,获得10
12秒前
ZZ发布了新的文献求助10
12秒前
13秒前
高贵白凝完成签到,获得积分10
14秒前
十八完成签到,获得积分10
14秒前
李健的小迷弟应助lee1984612采纳,获得10
15秒前
旅行者发布了新的文献求助10
16秒前
长安发布了新的文献求助10
17秒前
CodeCraft应助DBY采纳,获得10
17秒前
大个应助DBY采纳,获得10
17秒前
17秒前
17秒前
19秒前
19秒前
19秒前
20秒前
从不内卷发布了新的文献求助10
21秒前
Mercury完成签到,获得积分20
21秒前
22秒前
songjin发布了新的文献求助10
23秒前
23秒前
可爱的函函应助旅行者采纳,获得10
23秒前
Owen应助撸撸大仙采纳,获得10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152