How can SHAP (SHapley Additive exPlanations) interpretations improve deep learning based urban cellular automata model?

细胞自动机 计算机科学 人工智能 数学教育 理论计算机科学 数学
作者
Changlan Yang,Xuefeng Guan,Qingyang Xu,Weiran Xing,Xiaoyu Chen,Jinguo Chen,Peng Jia
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:111: 102133-102133 被引量:4
标识
DOI:10.1016/j.compenvurbsys.2024.102133
摘要

Interpretations of the urban cellular automata (CA) model aim to ensure that its predictive behaviors are consistent with real-world processes. Current urban CA interpretations have revealed the impacts of driving factors on land development suitability, or neighborhood effects and random perturbation on simulation results. However, three limitations remain unresolved: (1) the interpretations of deep learning (DL)-based urban CA are seldom integrated with the prerequired feature selection, (2) the input features from different urban CA modules are still explained by separate approaches, and (3) the interpretation results are rarely derived at the cell level to uncover spatially varying urban land development patterns. This study proposes a SHapley Additive exPlanations (SHAP)-based urban CA interpretation framework to address these challenges and improve urban CA. This framework uses model-level SHAP importance to identify dominant features from different modules for constructing the final simulation model. Then, cell-level SHAP importance is used to uncover spatially varying driving forces of urban expansion. The framework's effectiveness is rigorously tested and confirmed using a convolution neural network CA (CNN-CA) model for Dongguan City. The experimental results demonstrate that (1) SHAP-based model interpretation improves feature selection for DL-based urban CA. The figure of merit for CNN-CA calibrated using SHAP-based important features improves by 3%, outperforming the tested baseline methods. (2) SHAP measures the impacts of each feature from different CA modules in a whole. In this case, physical factors are much more important at the model level than proximity and accessibility factors, while neighborhood effect is the second most crucial factor. (3) Cell-level SHAP interpretations uncover spatially different urban land development patterns. For example, due to the extensive industrial land development in the northern Songshan Lake Zone, in the CNN-CA model, proximity to major roads within this region is associated with positive SHAP-based contribution share on cell-level urban expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好雨竹完成签到,获得积分10
1秒前
玖儿ovo发布了新的文献求助10
2秒前
2秒前
小鱼爱吃肉应助nunu采纳,获得10
7秒前
所所应助xx采纳,获得10
7秒前
自转无风发布了新的文献求助10
8秒前
科研通AI2S应助闪闪的沛槐采纳,获得10
8秒前
xiaonanzi1完成签到 ,获得积分10
9秒前
10秒前
somin完成签到,获得积分10
10秒前
优雅的化蛹完成签到,获得积分10
11秒前
ww发布了新的文献求助10
15秒前
15秒前
潇洒的诗桃完成签到,获得积分0
16秒前
宇宙第一甜妹完成签到 ,获得积分10
16秒前
sun完成签到,获得积分10
17秒前
科研通AI2S应助晚风采纳,获得10
17秒前
Hello应助赵鑫雅采纳,获得10
19秒前
xx发布了新的文献求助10
20秒前
20秒前
华仔应助一个人战争采纳,获得10
22秒前
闪闪的妙竹完成签到 ,获得积分10
23秒前
眼睛大又蓝完成签到,获得积分20
26秒前
xx完成签到,获得积分10
26秒前
一杯六一完成签到,获得积分10
27秒前
27秒前
29秒前
honest完成签到,获得积分10
29秒前
Attention完成签到 ,获得积分10
29秒前
30秒前
Mike完成签到,获得积分10
30秒前
上进生完成签到,获得积分10
31秒前
32秒前
33秒前
赵鑫雅发布了新的文献求助10
33秒前
科目三应助虚拟的沉鱼采纳,获得10
34秒前
潇潇完成签到 ,获得积分10
34秒前
香蕉觅云应助小张采纳,获得30
34秒前
元谷雪应助粗犷的代真采纳,获得10
35秒前
上进生发布了新的文献求助10
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
the critical response to tennessee williams 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254080
求助须知:如何正确求助?哪些是违规求助? 2896443
关于积分的说明 8292655
捐赠科研通 2565288
什么是DOI,文献DOI怎么找? 1392945
科研通“疑难数据库(出版商)”最低求助积分说明 652418
邀请新用户注册赠送积分活动 629856