列线图
逻辑回归
医学
接收机工作特性
预测效度
肾脏疾病
人口
预测建模
Lasso(编程语言)
试验预测值
回归分析
毒物控制
统计
内科学
急诊医学
计算机科学
环境卫生
数学
临床心理学
万维网
作者
Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin
标识
DOI:10.3389/fpubh.2024.1381754
摘要
Background The population with chronic kidney disease (CKD) has significantly heightened risk of fall accidents. The aim of this study was to develop a validated risk prediction model for fall accidents among CKD in the community. Methods Participants with CKD from the China Health and Retirement Longitudinal Study (CHARLS) were included. The study cohort underwent a random split into a training set and a validation set at a ratio of 70 to 30%. Logistic regression and LASSO regression analyses were applied to screen variables for optimal predictors in the model. A predictive model was then constructed and visually represented in a nomogram. Subsequently, the predictive performance was assessed through ROC curves, calibration curves, and decision curve analysis. Result A total of 911 participants were included, and the prevalence of fall accidents was 30.0% (242/911). Fall down experience, BMI, mobility, dominant handgrip, and depression were chosen as predictor factors to formulate the predictive model, visually represented in a nomogram. The AUC value of the predictive model was 0.724 (95% CI 0.679–0.769). Calibration curves and DCA indicated that the model exhibited good predictive performance. Conclusion In this study, we constructed a predictive model to assess the risk of falls among individuals with CKD in the community, demonstrating good predictive capability.
科研通智能强力驱动
Strongly Powered by AbleSci AI