Development and validation of prediction model for fall accidents among chronic kidney disease in the community

列线图 逻辑回归 医学 接收机工作特性 预测效度 肾脏疾病 人口 预测建模 Lasso(编程语言) 试验预测值 回归分析 毒物控制 统计 内科学 急诊医学 计算机科学 环境卫生 数学 临床心理学 万维网
作者
Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin,Pinli Lin
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fpubh.2024.1381754
摘要

Background The population with chronic kidney disease (CKD) has significantly heightened risk of fall accidents. The aim of this study was to develop a validated risk prediction model for fall accidents among CKD in the community. Methods Participants with CKD from the China Health and Retirement Longitudinal Study (CHARLS) were included. The study cohort underwent a random split into a training set and a validation set at a ratio of 70 to 30%. Logistic regression and LASSO regression analyses were applied to screen variables for optimal predictors in the model. A predictive model was then constructed and visually represented in a nomogram. Subsequently, the predictive performance was assessed through ROC curves, calibration curves, and decision curve analysis. Result A total of 911 participants were included, and the prevalence of fall accidents was 30.0% (242/911). Fall down experience, BMI, mobility, dominant handgrip, and depression were chosen as predictor factors to formulate the predictive model, visually represented in a nomogram. The AUC value of the predictive model was 0.724 (95% CI 0.679–0.769). Calibration curves and DCA indicated that the model exhibited good predictive performance. Conclusion In this study, we constructed a predictive model to assess the risk of falls among individuals with CKD in the community, demonstrating good predictive capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮云发布了新的文献求助30
刚刚
刚刚
刚刚
Redamancy完成签到,获得积分10
1秒前
盒子完成签到,获得积分20
1秒前
开心夏旋发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
4秒前
4秒前
4秒前
刘耀威完成签到,获得积分20
5秒前
啦11发布了新的文献求助10
5秒前
5秒前
6秒前
传奇3应助浮云采纳,获得10
6秒前
6秒前
情怀应助玩命的糖豆采纳,获得10
6秒前
6秒前
酷波er应助清新的秋白采纳,获得10
6秒前
元谷雪发布了新的文献求助10
7秒前
whiteside完成签到,获得积分10
7秒前
8秒前
Andd发布了新的文献求助10
8秒前
9秒前
植物园完成签到,获得积分10
10秒前
10秒前
ruirui发布了新的文献求助30
10秒前
无花果应助QP采纳,获得10
10秒前
曾经友琴发布了新的文献求助10
10秒前
复杂访冬发布了新的文献求助10
11秒前
左秋白发布了新的文献求助10
11秒前
whiteside发布了新的文献求助10
11秒前
保藏完成签到,获得积分10
11秒前
坚强金鱼发布了新的文献求助10
11秒前
11秒前
tph发布了新的文献求助10
11秒前
牛马完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420