已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enabling Predication of the Deep Learning Algorithms for Low-Dose CT Scan Image Denoising Models: A Systematic Literature Review

图像去噪 计算机科学 降噪 人工智能 算法 图像(数学) 模式识别(心理学) 计算机视觉
作者
M. Zubair,Helmi B. Md Rais,Fasee Ullah,Qasem Al-Tashi,Muhammad Faheem,Arfat Ahmad Khan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 79025-79050 被引量:2
标识
DOI:10.1109/access.2024.3407774
摘要

Computed Tomography (CT) is a non-invasive imaging modality used to detect abnormalities in the human body with high precision. However, the electromagnetic radiation emitted during CT scans poses health risks, potentially leading to the development of metabolic abnormalities and genetic disorders, which increase the risk of cancer. The Low-Dose CT (LDCT) scanning technique was developed to address these hazards, but it has several limitations, including noise, artifacts, reduced contrast, and structural changes. These drawbacks significantly reduce the diagnostic capabilities of Computer-Aided Diagnosis (CAD) systems. Eliminating these noises and artifacts while preserving critical features poses a significant challenge. Traditional CT denoising algorithms struggle with edge blurring and high computational costs, often generating artifacts in flat regions as noise levels increase. Consequently, deep learning-based methods have emerged as a promising solution for LDCT image denoising. In this study, a comprehensive Systematic Literature Review (SLR) following PRISMA guidelines was conducted to explore the latest advancements in deep learning algorithms for LDCT image denoising. This SLR spans LDCT image-denoising research from 2018 to 2024, providing a detailed summary of methodologies, benefits, limitations, parameters, and trends. This study delves into the acquisition process of CT scans, investigating radiation absorption across various anatomical regions, as well as identifying sources of noise and its distribution within the LDCT images. Additionally, it enhances our understanding of LDCT image denoising trends and provides valuable insights for future research, thus making a substantial contribution to ongoing efforts to enhance the quality and reliability of LDCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲山彤完成签到 ,获得积分10
1秒前
不辣的完成签到 ,获得积分10
4秒前
young发布了新的文献求助10
7秒前
边曦完成签到 ,获得积分10
9秒前
亲爱的安德烈完成签到,获得积分10
10秒前
10秒前
hank完成签到 ,获得积分10
11秒前
12秒前
林狗完成签到 ,获得积分10
14秒前
18秒前
cocolu应助shaco采纳,获得30
23秒前
young完成签到 ,获得积分10
26秒前
27秒前
白日幻想家完成签到 ,获得积分10
29秒前
yx_cheng应助mbf采纳,获得10
35秒前
充电宝应助优美凡双采纳,获得10
40秒前
focus完成签到 ,获得积分10
41秒前
兜有米完成签到,获得积分10
43秒前
小情绪完成签到 ,获得积分10
44秒前
小二郎应助科研通管家采纳,获得10
45秒前
田様应助科研通管家采纳,获得10
46秒前
杳鸢应助科研通管家采纳,获得200
46秒前
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
Brain完成签到 ,获得积分10
48秒前
FFFFF完成签到 ,获得积分10
51秒前
领导范儿应助wjadejing采纳,获得10
51秒前
烟花应助自然的茉莉采纳,获得10
51秒前
52秒前
54秒前
56秒前
传奇3应助韵寒采纳,获得10
59秒前
1分钟前
mbf发布了新的文献求助10
1分钟前
1分钟前
研友_5Y9Z75完成签到 ,获得积分0
1分钟前
1分钟前
wjadejing发布了新的文献求助10
1分钟前
领导范儿应助容言采纳,获得10
1分钟前
WUWUWU应助容言采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499935
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428778
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382