Vectorized building extraction from high-resolution remote sensing images using spatial cognitive graph convolution model

计算机科学 图形 卷积(计算机科学) 萃取(化学) 遥感 人工智能 高分辨率 计算机视觉 图像分辨率 模式识别(心理学) 地理 理论计算机科学 化学 色谱法 人工神经网络
作者
Zhuotong Du,Haigang Sui,Qiming Zhou,Mingting Zhou,Weiyue Shi,Jianxun Wang,Junyi Liu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:213: 53-71
标识
DOI:10.1016/j.isprsjprs.2024.05.015
摘要

Traditional approach from source image to application vectors in building extraction needs additional complex regularization of converted intermediate raster results. While in conversion, the lost detailed artifacts, unnecessary nodes, and messy paths would be labor-intensive to repair errors and topological issues, even aside the inherent problems of blob-like objects and blurry, jagged edges in first-stage extraction. This research explores new graph convolution-driven solution, the spatial-cognitive shaping model (SCShaping), to directly access vectorization form of individual buildings through spatial cognitive approximation to coordinates that form building boundaries. To strengthen graph nodes expressivity, this method enriches topological feature embedding travelling along the model architecture along with features contributed from convolutional neural network (CNN) extractor. To stimulate the neighboring aggregation in graphs, Graph-Encoder-Decoder mechanism is introduced to augment feature reuse integrating complementary graph convolution layers. The strong embedding guarantees effective feature tapping and the robust structure guarantees the feature mining. Comparative studies have been conducted between the proposed approach with five other methods on three challenging datasets. The results demonstrate the proposed approach yields unanimous and significant improvements in mask-wise metrics, which evaluate object integrity and accuracy, as well as edge-wise metrics, which assess contour regularity and precision. The outperformance also indicates better multi-scale object adaptability of SCShaping. The obtain-and-play SCShaping commands a pleasurable implementation way to advance ideal man–machine collaboration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
阿尔辛多完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
yile应助黎智宸采纳,获得10
3秒前
3秒前
shuang0116应助北方有嘉任采纳,获得10
4秒前
关河完成签到,获得积分20
4秒前
4秒前
C14yd3n发布了新的文献求助10
5秒前
zzz发布了新的文献求助10
6秒前
6秒前
Jerryluo发布了新的文献求助10
6秒前
送外卖了发布了新的文献求助10
6秒前
kaustal完成签到,获得积分10
7秒前
萧水白应助莹仔采纳,获得10
7秒前
7秒前
anan发布了新的文献求助10
7秒前
7秒前
8秒前
Evangeline完成签到 ,获得积分10
8秒前
9秒前
辛慧完成签到,获得积分10
9秒前
11秒前
小雨发布了新的文献求助10
11秒前
华桦子完成签到,获得积分10
11秒前
ty发布了新的文献求助10
11秒前
别太可爱发布了新的文献求助10
12秒前
yuchen完成签到,获得积分10
12秒前
慕青应助莹仔采纳,获得10
13秒前
雁回发布了新的文献求助10
14秒前
正函数发布了新的文献求助10
14秒前
14秒前
lzh完成签到,获得积分10
14秒前
15秒前
斯文败类应助问下他采纳,获得10
16秒前
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227802
求助须知:如何正确求助?哪些是违规求助? 2875741
关于积分的说明 8192365
捐赠科研通 2542879
什么是DOI,文献DOI怎么找? 1373241
科研通“疑难数据库(出版商)”最低求助积分说明 646713
邀请新用户注册赠送积分活动 621181