分解
碳循环
垃圾箱
碎石
比例(比率)
植物凋落物
预测误差的方差分解
纤维素
自行车
差异(会计)
溪流
地理
环境科学
生态学
生物
生态系统
数学
统计
计算机科学
林业
地图学
生物化学
会计
业务
计算机网络
作者
Scott D. Tiegs,Krista A. Capps,David M. Costello,John P. Schmidt,Christopher J. Patrick,Jennifer J. Follstad Shah,Carri J. LeRoy,Vicenç Acuña,Ricardo Albariño,Daniel C. Allen,Cecilia Alonso,Patricio Andino,Clay P. Arango,Jukka Aroviita,Marcus Vinícius Moreira Barbosa,Leon A. Barmuta,Colden V. Baxter,Brent J. Bellinger,Luz Boyero,Lyubov Bragina
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2024-05-30
卷期号:384 (6701): 1191-1195
被引量:7
标识
DOI:10.1126/science.adn1262
摘要
Rivers and streams contribute to global carbon cycling by decomposing immense quantities of terrestrial plant matter. However, decomposition rates are highly variable and large-scale patterns and drivers of this process remain poorly understood. Using a cellulose-based assay to reflect the primary constituent of plant detritus, we generated a predictive model (81% variance explained) for cellulose decomposition rates across 514 globally distributed streams. A large number of variables were important for predicting decomposition, highlighting the complexity of this process at the global scale. Predicted cellulose decomposition rates, when combined with genus-level litter quality attributes, explain published leaf litter decomposition rates with high accuracy (70% variance explained). Our global map provides estimates of rates across vast understudied areas of Earth and reveals rapid decomposition across continental-scale areas dominated by human activities.
科研通智能强力驱动
Strongly Powered by AbleSci AI