Regression-Guided Refocusing Learning With Feature Alignment for Remote Sensing Tiny Object Detection

计算机科学 目标检测 人工智能 特征(语言学) 遥感 特征提取 计算机视觉 模式识别(心理学) 对象(语法) 地质学 哲学 语言学
作者
Lihui Ge,Guanqun Wang,Tong Zhang,Yin Zhuang,He Chen,Hao Dong,Liang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:6
标识
DOI:10.1109/tgrs.2024.3407122
摘要

Tiny object detection is a formidable challenge in remote sensing intelligent interpretation. Tiny objects are usually fuzzy, densely distributed and highly sensitive to positioning errors, which leads to the mainstream detector usually achieving suboptimal detection performance when facing tiny objects. To address the mismatch of mainstream detector architectures and model optimization strategies in the context of tiny object detection, this paper presents an efficient and interpretable algorithm for tiny object detection, termed the Cross-Attention based Feature Fusion Enhanced tiny object detection Network (CAF 2 ENet). First, the cross-attention mechanism is introduced to refine the upsampling results of deep features. This refinement improves the precision of multi-scale feature fusion. Second, a training strategy named regression-based refocusing learning is introduced. Deviating from the conventional optimization strategy, our method guides the optimizer to prioritize higher-quality detection boxes by adjusting sample weights. This adjustment significantly amplifies the detector's potential to achieve superior detection results. Finally, the object composite confidence score is employed for the interpretable filtering of detection boxes. Extensive experiments on Tiny Object Detection in Aerial Images (AI-TOD) and object Detection in Optical Remote sensing images (DIOR) datasets are carried out, and comparison indicate that the proposed CAF 2 ENet can perform the remarkable performance compared to other state-of-the-art (SOTA) tiny object detection detectors, as it can reach 63.7% Average Precision ( AP 50 ) on AI-TOD and 75.4% AP 50 on DIOR, achieve SOTA performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shuy完成签到,获得积分10
1秒前
可爱的函函应助wad采纳,获得10
1秒前
鹅蛋完成签到,获得积分10
1秒前
wonder123发布了新的文献求助10
1秒前
suntee发布了新的文献求助10
2秒前
传奇3应助怕黑思山采纳,获得10
2秒前
2秒前
happy_07完成签到,获得积分10
2秒前
hhc发布了新的文献求助10
2秒前
Polaris完成签到,获得积分10
2秒前
3秒前
yy发布了新的文献求助10
3秒前
3秒前
JD完成签到,获得积分20
3秒前
徐进发布了新的文献求助10
3秒前
3秒前
清醒发布了新的文献求助10
3秒前
woshizy完成签到,获得积分10
5秒前
5秒前
6秒前
大模型应助喵啊呜小可爱采纳,获得10
6秒前
xjc发布了新的文献求助10
7秒前
热心幻天发布了新的文献求助10
7秒前
7秒前
好好学习完成签到,获得积分10
8秒前
9秒前
苏11发布了新的文献求助10
9秒前
卷芽大王完成签到,获得积分10
10秒前
朵朵完成签到,获得积分10
12秒前
索大学术发布了新的文献求助10
12秒前
蟹治猿完成签到 ,获得积分10
12秒前
13秒前
14秒前
Skylar_Shao发布了新的文献求助10
14秒前
英俊的铭应助佳芸采纳,获得10
14秒前
princess完成签到,获得积分20
14秒前
zzz完成签到 ,获得积分10
15秒前
16秒前
宇宙的公主完成签到 ,获得积分10
16秒前
HH完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613276
求助须知:如何正确求助?哪些是违规求助? 4698456
关于积分的说明 14897966
捐赠科研通 4735724
什么是DOI,文献DOI怎么找? 2546946
邀请新用户注册赠送积分活动 1510961
关于科研通互助平台的介绍 1473537