Regression-Guided Refocusing Learning With Feature Alignment for Remote Sensing Tiny Object Detection

计算机科学 目标检测 人工智能 特征(语言学) 遥感 特征提取 计算机视觉 模式识别(心理学) 对象(语法) 地质学 哲学 语言学
作者
Lihui Ge,Guanqun Wang,Tong Zhang,Yin Zhuang,He Chen,Hao Dong,Liang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:6
标识
DOI:10.1109/tgrs.2024.3407122
摘要

Tiny object detection is a formidable challenge in remote sensing intelligent interpretation. Tiny objects are usually fuzzy, densely distributed and highly sensitive to positioning errors, which leads to the mainstream detector usually achieving suboptimal detection performance when facing tiny objects. To address the mismatch of mainstream detector architectures and model optimization strategies in the context of tiny object detection, this paper presents an efficient and interpretable algorithm for tiny object detection, termed the Cross-Attention based Feature Fusion Enhanced tiny object detection Network (CAF 2 ENet). First, the cross-attention mechanism is introduced to refine the upsampling results of deep features. This refinement improves the precision of multi-scale feature fusion. Second, a training strategy named regression-based refocusing learning is introduced. Deviating from the conventional optimization strategy, our method guides the optimizer to prioritize higher-quality detection boxes by adjusting sample weights. This adjustment significantly amplifies the detector's potential to achieve superior detection results. Finally, the object composite confidence score is employed for the interpretable filtering of detection boxes. Extensive experiments on Tiny Object Detection in Aerial Images (AI-TOD) and object Detection in Optical Remote sensing images (DIOR) datasets are carried out, and comparison indicate that the proposed CAF 2 ENet can perform the remarkable performance compared to other state-of-the-art (SOTA) tiny object detection detectors, as it can reach 63.7% Average Precision ( AP 50 ) on AI-TOD and 75.4% AP 50 on DIOR, achieve SOTA performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
思源应助单纯的紫易采纳,获得30
1秒前
77发布了新的文献求助10
2秒前
daodao发布了新的文献求助10
2秒前
可爱的函函应助djy采纳,获得10
2秒前
纪糜完成签到,获得积分10
2秒前
Stella应助端午采纳,获得10
2秒前
科目三应助123采纳,获得10
2秒前
wang完成签到 ,获得积分10
2秒前
缥缈逍遥完成签到,获得积分10
2秒前
小小怪下士应助俊逸尔云采纳,获得10
3秒前
单单来迟完成签到,获得积分10
3秒前
Kaligash完成签到,获得积分10
3秒前
Stella应助顿手把其采纳,获得10
3秒前
kfc19960203完成签到,获得积分10
4秒前
脏脏鲤完成签到 ,获得积分10
4秒前
4秒前
sherry发布了新的文献求助10
4秒前
matchstick发布了新的文献求助10
5秒前
Yamsh发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
CherylZhao发布了新的文献求助10
7秒前
上官若男应助快乐寄风采纳,获得10
7秒前
大个应助lkj采纳,获得10
7秒前
Mine_cherry应助huanglie采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
sinmon完成签到,获得积分10
7秒前
7秒前
小白菜发布了新的文献求助20
8秒前
CodeCraft应助怕黑的乐蓉采纳,获得10
8秒前
gsl发布了新的文献求助10
8秒前
8秒前
8秒前
Owen应助南音采纳,获得10
9秒前
桐桐应助南音采纳,获得10
9秒前
bkagyin应助南音采纳,获得10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099