Regression-Guided Refocusing Learning with Feature Alignment for Remote Sensing Tiny Object Detection

计算机科学 目标检测 人工智能 特征(语言学) 遥感 特征提取 计算机视觉 模式识别(心理学) 对象(语法) 地质学 语言学 哲学
作者
Lihui Ge,Guanqun Wang,Tong Zhang,Yin Zhuang,He Chen,Hao Dong,Liang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:2
标识
DOI:10.1109/tgrs.2024.3407122
摘要

Tiny object detection is a formidable challenge in remote sensing intelligent interpretation. Tiny objects are usually fuzzy, densely distributed and highly sensitive to positioning errors, which leads to the mainstream detector usually achieving suboptimal detection performance when facing tiny objects. To address the mismatch of mainstream detector architectures and model optimization strategies in the context of tiny object detection, this paper presents an efficient and interpretable algorithm for tiny object detection, termed the Cross-Attention based Feature Fusion Enhanced tiny object detection Network (CAF 2 ENet). First, the cross-attention mechanism is introduced to refine the upsampling results of deep features. This refinement improves the precision of multi-scale feature fusion. Second, a training strategy named regression-based refocusing learning is introduced. Deviating from the conventional optimization strategy, our method guides the optimizer to prioritize higher-quality detection boxes by adjusting sample weights. This adjustment significantly amplifies the detector's potential to achieve superior detection results. Finally, the object composite confidence score is employed for the interpretable filtering of detection boxes. Extensive experiments on Tiny Object Detection in Aerial Images (AI-TOD) and object Detection in Optical Remote sensing images (DIOR) datasets are carried out, and comparison indicate that the proposed CAF 2 ENet can perform the remarkable performance compared to other state-of-the-art (SOTA) tiny object detection detectors, as it can reach 63.7% Average Precision ( AP 50 ) on AI-TOD and 75.4% AP 50 on DIOR, achieve SOTA performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈学习学习噢完成签到,获得积分10
1秒前
1秒前
12rcli发布了新的文献求助30
1秒前
执着的小熊猫完成签到 ,获得积分10
1秒前
1秒前
少7一点8完成签到,获得积分10
1秒前
仲夏发布了新的文献求助10
1秒前
慕青应助望星空采纳,获得10
1秒前
阿萨德发布了新的文献求助10
3秒前
开出花来完成签到,获得积分10
3秒前
慕青应助啾啾尼泊尔采纳,获得10
3秒前
小北完成签到,获得积分10
4秒前
热情的菲音完成签到,获得积分10
4秒前
合适苗条完成签到,获得积分10
5秒前
胡图图发布了新的文献求助10
5秒前
胡图图发布了新的文献求助10
5秒前
6秒前
开出花来发布了新的文献求助10
6秒前
6秒前
深情安青应助老闭比基尼采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
善学以致用应助JL采纳,获得10
7秒前
科目三应助魔幻花卷采纳,获得10
8秒前
8秒前
8秒前
完美世界应助落寞莫茗采纳,获得10
8秒前
zjy完成签到,获得积分10
9秒前
Ava应助热情的菲音采纳,获得10
9秒前
9秒前
10秒前
10秒前
柒柒完成签到,获得积分20
10秒前
tinghai86应助彩色觅柔采纳,获得10
12秒前
蘇q完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
于玕发布了新的文献求助10
13秒前
满家归寻发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602661
求助须知:如何正确求助?哪些是违规求助? 4011768
关于积分的说明 12420364
捐赠科研通 3692108
什么是DOI,文献DOI怎么找? 2035470
邀请新用户注册赠送积分活动 1068575
科研通“疑难数据库(出版商)”最低求助积分说明 953144