重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Regression-Guided Refocusing Learning With Feature Alignment for Remote Sensing Tiny Object Detection

计算机科学 目标检测 人工智能 特征(语言学) 遥感 特征提取 计算机视觉 模式识别(心理学) 对象(语法) 地质学 哲学 语言学
作者
Lihui Ge,Guanqun Wang,Tong Zhang,Yin Zhuang,He Chen,Hao Dong,Liang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:6
标识
DOI:10.1109/tgrs.2024.3407122
摘要

Tiny object detection is a formidable challenge in remote sensing intelligent interpretation. Tiny objects are usually fuzzy, densely distributed and highly sensitive to positioning errors, which leads to the mainstream detector usually achieving suboptimal detection performance when facing tiny objects. To address the mismatch of mainstream detector architectures and model optimization strategies in the context of tiny object detection, this paper presents an efficient and interpretable algorithm for tiny object detection, termed the Cross-Attention based Feature Fusion Enhanced tiny object detection Network (CAF 2 ENet). First, the cross-attention mechanism is introduced to refine the upsampling results of deep features. This refinement improves the precision of multi-scale feature fusion. Second, a training strategy named regression-based refocusing learning is introduced. Deviating from the conventional optimization strategy, our method guides the optimizer to prioritize higher-quality detection boxes by adjusting sample weights. This adjustment significantly amplifies the detector's potential to achieve superior detection results. Finally, the object composite confidence score is employed for the interpretable filtering of detection boxes. Extensive experiments on Tiny Object Detection in Aerial Images (AI-TOD) and object Detection in Optical Remote sensing images (DIOR) datasets are carried out, and comparison indicate that the proposed CAF 2 ENet can perform the remarkable performance compared to other state-of-the-art (SOTA) tiny object detection detectors, as it can reach 63.7% Average Precision ( AP 50 ) on AI-TOD and 75.4% AP 50 on DIOR, achieve SOTA performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王威发布了新的文献求助30
1秒前
Ying完成签到,获得积分20
1秒前
隐形曼青应助滕侑林采纳,获得10
1秒前
2秒前
3秒前
希望天下0贩的0应助Goolk采纳,获得10
3秒前
3秒前
coldpp发布了新的文献求助10
3秒前
芝士小熊完成签到 ,获得积分10
4秒前
李佳烨完成签到,获得积分10
4秒前
顾矜应助忐忑的凝云采纳,获得10
5秒前
高铭泽完成签到,获得积分10
6秒前
6秒前
6秒前
PINO完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
DrWho发布了新的文献求助10
7秒前
wwwwww发布了新的文献求助10
8秒前
8秒前
加菲丰丰应助悦耳冰萍采纳,获得60
8秒前
浮游应助Seven采纳,获得20
8秒前
9秒前
jz发布了新的文献求助10
9秒前
9秒前
爆米花应助无限绮南采纳,获得10
9秒前
Song发布了新的文献求助30
9秒前
脑洞疼应助dfsdf采纳,获得10
9秒前
Owen应助璐璇采纳,获得10
10秒前
suns完成签到,获得积分10
10秒前
abb先生发布了新的文献求助150
10秒前
随随完成签到 ,获得积分10
10秒前
11秒前
12秒前
Eve发布了新的文献求助10
12秒前
12秒前
蒋庆完成签到,获得积分10
12秒前
Zx_1993应助FLZLC采纳,获得20
12秒前
缓慢迎波完成签到,获得积分10
13秒前
Orange应助可靠月亮采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567