Dual-Energy-Barrier Stable Superhydrophobic Structures for Long Icing Delay

结冰 材料科学 亚稳态 纳米技术 屏障激活 化学物理 化学 分子 物理 气象学 有机化学
作者
Lizhong Wang,Daizhou Li,Guochen Jiang,Xinyu Hu,Rui Peng,Ziyan Song,Hongjun Zhang,Peixun Fan,Minlin Zhong
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (19): 12489-12502 被引量:11
标识
DOI:10.1021/acsnano.4c02051
摘要

Using superhydrophobic surfaces (SHSs) with the water-repellent Cassie–Baxter (CB) state is widely acknowledged as an effective approach for anti-icing performances. Nonetheless, the CB state is susceptible to diverse physical phenomena (e.g., vapor condensation, gas contraction, etc.) at low temperatures, resulting in the transition to the sticky Wenzel state and the loss of anti-icing capabilities. SHSs with various micronanostructures have been empirically examined for enhancing the CB stability; however, the energy barrier transits from the metastable CB state to the stable Wenzel state and thus the CB stability enhancement is currently not enough to guarantee a well and appliable anti-icing performance at low temperatures. Here, we proposed a dual-energy-barrier design strategy on superhydrophobic micronanostructures. Rather than the typical single energy barrier of the conventional CB-to-Wenzel transition, we introduced two CB states (i.e., CB I and CB II), where the state transition needed to go through CB I and CB II then to Wenzel state, thus significantly improving the entire CB stability. We applied ultrafast laser to fabricate this dual-energy-barrier micronanostructures, established a theoretical framework, and performed a series of experiments. The anti-icing performances were exhibited with long delay icing times (over 27,000 s) and low ice-adhesion strengths (0.9 kPa). The kinetic mechanism underpinning the enhanced CB anti-icing stability was elucidated and attributed to the preferential liquid pinning in the shallow closed structures, enabling the higher CB-Wenzel transition energy barrier to sustain the CB state. Comprehensive durability tests further corroborated the potentials of the designed dual-energy-barrier structures for anti-icing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小兰完成签到,获得积分10
1秒前
nhh完成签到,获得积分10
1秒前
吉吉发布了新的文献求助10
1秒前
灰灰发布了新的文献求助10
1秒前
赤侯完成签到,获得积分10
1秒前
六清完成签到,获得积分10
1秒前
2秒前
生命科学的第一推动力完成签到 ,获得积分10
2秒前
薰硝壤应助无语采纳,获得80
2秒前
NexusExplorer应助斯文可仁采纳,获得10
2秒前
研友_VZG7GZ应助UGO采纳,获得10
3秒前
士多碑李完成签到,获得积分20
3秒前
waynechang完成签到,获得积分10
3秒前
小豆芽完成签到,获得积分10
3秒前
神勇砖家完成签到 ,获得积分10
3秒前
nxf发布了新的文献求助10
4秒前
yeye完成签到,获得积分10
4秒前
feitachi发布了新的文献求助30
5秒前
科研通AI2S应助阿伟采纳,获得10
5秒前
5秒前
5秒前
苹果发布了新的文献求助10
7秒前
假萌完成签到,获得积分10
7秒前
7秒前
orixero应助小兰采纳,获得30
8秒前
快乐大象应助幽默的豆芽采纳,获得50
9秒前
9秒前
不要引力发布了新的文献求助10
9秒前
10秒前
xeason发布了新的文献求助10
10秒前
三岁完成签到,获得积分10
10秒前
浮生完成签到,获得积分10
10秒前
小会发布了新的文献求助10
10秒前
英姑应助明理寄云采纳,获得10
11秒前
眼睛大鸡翅完成签到,获得积分10
11秒前
乐乐应助feitachi采纳,获得30
12秒前
牙牙发布了新的文献求助10
12秒前
徐叽钰应助123采纳,获得30
12秒前
FashionBoy应助刘青采纳,获得10
14秒前
needs完成签到,获得积分20
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143215
求助须知:如何正确求助?哪些是违规求助? 2794316
关于积分的说明 7810682
捐赠科研通 2450507
什么是DOI,文献DOI怎么找? 1303891
科研通“疑难数据库(出版商)”最低求助积分说明 627126
版权声明 601386