Bayesian Factor Mixture Modeling with Response Time for Detecting Careless Respondents

贝叶斯概率 因子(编程语言) 计量经济学 计算机科学 统计 心理学 人工智能 数学 程序设计语言
作者
Lijin Zhang,Esther Ulitzsch,Benjamin W. Domingue
标识
DOI:10.31234/osf.io/qc9jb
摘要

Careless respondents inject noise into data which can distort research findings and compromise model fit. To address this, factor mixture modeling (FMM) has been widely used to identify careless respondents. Traditionally, researchers have relied on reverse-worded questions in FMM to facilitate the detection of careless responding. With the rise of online data collection platforms, response time has appeal as a means for detecting careless respondents. We introduce a Bayesian factor mixture model that utilizes response time to identify careless respondents. By jointly modeling responses and response time, this approach effectively identifies careless individuals exhibiting rapid and random response styles. Through simulation studies, we found that: (1) the proposed model achieves high estimation accuracy of key model parameters (i.e., loadings and intercepts); (2) it demonstrates high accuracy and sensitivity in correctly classifying respondents as either attentive or careless; and (3) it maintains classification error rates at an acceptable level. An additional benefit is that incorporating response time into the model enhances model convergence as well as accuracy of classification and estimation. An empirical study tests the applicability of the proposed model in real-world scenarios, comparing its performance to the traditional method based on reverse-worded questions. The results underscore the practical advantages of enriching FMM with collateral response time information in excluding careless responses and improving data quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oceanao应助菜菜采纳,获得10
3秒前
琴_Q123完成签到,获得积分10
4秒前
可爱的香菇完成签到 ,获得积分10
6秒前
深情安青应助AoAoo采纳,获得10
6秒前
ssassassassa完成签到 ,获得积分10
6秒前
傢誠发布了新的文献求助10
9秒前
义气的元柏完成签到 ,获得积分10
9秒前
10秒前
徐徐完成签到,获得积分10
10秒前
10秒前
zane完成签到 ,获得积分10
11秒前
李健应助风趣夜云采纳,获得10
12秒前
12秒前
春天在这李完成签到 ,获得积分10
13秒前
13秒前
Ava应助zj采纳,获得10
14秒前
闭关修炼学术小菜鸡完成签到,获得积分10
19秒前
万能图书馆应助墨墨采纳,获得30
20秒前
22秒前
profit完成签到,获得积分10
22秒前
帅气的马里奥完成签到 ,获得积分10
23秒前
24秒前
大山竹完成签到,获得积分20
24秒前
huangdq6发布了新的文献求助10
26秒前
26秒前
26秒前
28秒前
29秒前
RenHP完成签到,获得积分10
31秒前
初雪平寒发布了新的文献求助10
31秒前
31秒前
华仔应助大山竹采纳,获得10
32秒前
1257应助科研通管家采纳,获得10
33秒前
biye应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
不配.应助科研通管家采纳,获得10
33秒前
1257应助科研通管家采纳,获得10
33秒前
情怀应助科研通管家采纳,获得10
33秒前
领导范儿应助科研通管家采纳,获得20
33秒前
丘比特应助科研通管家采纳,获得10
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159782
求助须知:如何正确求助?哪些是违规求助? 2810676
关于积分的说明 7889078
捐赠科研通 2469740
什么是DOI,文献DOI怎么找? 1315055
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012