清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A 3D framework for segmentation of carotid artery vessel wall and identification of plaque compositions in multi-sequence MR images

颈动脉 分割 子网 鉴定(生物学) 人工智能 颈总动脉 图像分割 医学 易损斑块 计算机科学 模式识别(心理学) 计算机视觉 心脏病学 生物 计算机安全 植物
作者
Jian Wang,Fan Yu,Mengze Zhang,Jie Lu,Zhen Qian
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:116: 102402-102402 被引量:3
标识
DOI:10.1016/j.compmedimag.2024.102402
摘要

Accurately assessing carotid artery wall thickening and identifying risky plaque components are critical for early diagnosis and risk management of carotid atherosclerosis. In this paper, we present a 3D framework for automated segmentation of the carotid artery vessel wall and identification of the compositions of carotid plaque in multi-sequence magnetic resonance (MR) images under the challenge of imperfect manual labeling. Manual labeling is commonly done in 2D slices of these multi-sequence MR images and often lacks perfect alignment across 2D slices and the multiple MR sequences, leading to labeling inaccuracies. To address such challenges, our framework is split into two parts: a segmentation subnetwork and a plaque component identification subnetwork. Initially, a 2D localization network pinpoints the carotid artery's position, extracting the region of interest (ROI) from the input images. Following that, a signed-distance-map-enabled 3D U-net (Çiçek etal, 2016)an adaptation of the nnU-net (Ronneberger and Fischer, 2015) segments the carotid artery vessel wall. This method allows for the concurrent segmentation of the vessel wall area using the signed distance map (SDM) loss (Xue et al., 2020) which regularizes the segmentation surfaces in 3D and reduces erroneous segmentation caused by imperfect manual labels. Subsequently, the ROI of the input images and the obtained vessel wall masks are extracted and combined to obtain the identification results of plaque components in the identification subnetwork. Tailored data augmentation operations are introduced into the framework to reduce the false positive rate of calcification and hemorrhage identification. We trained and tested our proposed method on a dataset consisting of 115 patients, and it achieves an accurate segmentation result of carotid artery wall (0.8459 Dice), which is superior to the best result in published studies (0.7885 Dice). Our approach yielded accuracies of 0.82, 0.73 and 0.88 for the identification of calcification, lipid-rich core and hemorrhage components. Our proposed framework can be potentially used in clinical and research settings to help radiologists perform cumbersome reading tasks and evaluate the risk of carotid plaques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的凌晴完成签到 ,获得积分10
2秒前
12秒前
愤怒的念蕾完成签到,获得积分10
15秒前
cgs完成签到 ,获得积分10
16秒前
自由的雅旋完成签到 ,获得积分10
23秒前
练得身形似鹤形完成签到 ,获得积分10
23秒前
悠树里完成签到,获得积分10
45秒前
gwbk完成签到,获得积分10
48秒前
隐形曼青应助科研通管家采纳,获得10
58秒前
58秒前
1分钟前
1分钟前
neptuniar发布了新的文献求助10
1分钟前
雪花完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
keke发布了新的文献求助10
1分钟前
外向白竹完成签到,获得积分20
1分钟前
慕青应助keke采纳,获得10
1分钟前
jlwang完成签到,获得积分10
2分钟前
Bond完成签到 ,获得积分10
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
2分钟前
简单花花完成签到,获得积分10
2分钟前
mojiu发布了新的文献求助30
2分钟前
Tong完成签到,获得积分0
2分钟前
外向白竹发布了新的文献求助10
3分钟前
酷然完成签到,获得积分10
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
3分钟前
知行者完成签到 ,获得积分10
3分钟前
3分钟前
开心每一天完成签到 ,获得积分10
4分钟前
爆米花应助keke采纳,获得10
4分钟前
4分钟前
AM发布了新的文献求助10
4分钟前
mojiu完成签到,获得积分10
4分钟前
研友_VZG7GZ应助AM采纳,获得10
4分钟前
4分钟前
keke发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612005
求助须知:如何正确求助?哪些是违规求助? 4696171
关于积分的说明 14890481
捐赠科研通 4730707
什么是DOI,文献DOI怎么找? 2546088
邀请新用户注册赠送积分活动 1510419
关于科研通互助平台的介绍 1473299