A 3D framework for segmentation of carotid artery vessel wall and identification of plaque compositions in multi-sequence MR images

颈动脉 分割 子网 鉴定(生物学) 人工智能 颈总动脉 图像分割 医学 易损斑块 计算机科学 模式识别(心理学) 计算机视觉 心脏病学 生物 计算机安全 植物
作者
Jian Wang,Fan Yu,Mengze Zhang,Jie Lu,Zhen Qian
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:116: 102402-102402
标识
DOI:10.1016/j.compmedimag.2024.102402
摘要

Accurately assessing carotid artery wall thickening and identifying risky plaque components are critical for early diagnosis and risk management of carotid atherosclerosis. In this paper, we present a 3D framework for automated segmentation of the carotid artery vessel wall and identification of the compositions of carotid plaque in multi-sequence magnetic resonance (MR) images under the challenge of imperfect manual labeling. Manual labeling is commonly done in 2D slices of these multi-sequence MR images and often lacks perfect alignment across 2D slices and the multiple MR sequences, leading to labeling inaccuracies. To address such challenges, our framework is split into two parts: a segmentation subnetwork and a plaque component identification subnetwork. Initially, a 2D localization network pinpoints the carotid artery's position, extracting the region of interest (ROI) from the input images. Following that, a signed-distance-map-enabled 3D U-net (Çiçek etal, 2016)an adaptation of the nnU-net (Ronneberger and Fischer, 2015) segments the carotid artery vessel wall. This method allows for the concurrent segmentation of the vessel wall area using the signed distance map (SDM) loss (Xue et al., 2020) which regularizes the segmentation surfaces in 3D and reduces erroneous segmentation caused by imperfect manual labels. Subsequently, the ROI of the input images and the obtained vessel wall masks are extracted and combined to obtain the identification results of plaque components in the identification subnetwork. Tailored data augmentation operations are introduced into the framework to reduce the false positive rate of calcification and hemorrhage identification. We trained and tested our proposed method on a dataset consisting of 115 patients, and it achieves an accurate segmentation result of carotid artery wall (0.8459 Dice), which is superior to the best result in published studies (0.7885 Dice). Our approach yielded accuracies of 0.82, 0.73 and 0.88 for the identification of calcification, lipid-rich core and hemorrhage components. Our proposed framework can be potentially used in clinical and research settings to help radiologists perform cumbersome reading tasks and evaluate the risk of carotid plaques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小垚完成签到,获得积分10
7秒前
非我完成签到 ,获得积分10
14秒前
14秒前
默默的安白完成签到 ,获得积分10
16秒前
wjf123完成签到 ,获得积分10
20秒前
巴达天使完成签到,获得积分10
21秒前
tmobiusx完成签到,获得积分10
23秒前
mike2012完成签到 ,获得积分10
26秒前
激情的含巧完成签到,获得积分10
26秒前
郑志凡完成签到 ,获得积分10
27秒前
dajiejie完成签到 ,获得积分10
27秒前
四月完成签到 ,获得积分10
32秒前
affff完成签到 ,获得积分10
32秒前
Regina完成签到 ,获得积分10
34秒前
奔跑的蒲公英完成签到,获得积分10
39秒前
Ethan完成签到 ,获得积分0
39秒前
聪慧语山完成签到 ,获得积分10
45秒前
April完成签到 ,获得积分10
45秒前
GarAnr完成签到,获得积分10
46秒前
修水县1个科研人完成签到 ,获得积分10
47秒前
znn完成签到 ,获得积分10
50秒前
luoyukejing完成签到,获得积分10
54秒前
55秒前
55秒前
56秒前
景__完成签到 ,获得积分10
1分钟前
高高的天亦完成签到 ,获得积分10
1分钟前
友好的牛排完成签到,获得积分10
1分钟前
烟花应助刘蓬勃采纳,获得10
1分钟前
勤恳风华完成签到,获得积分10
1分钟前
waoller1完成签到,获得积分10
1分钟前
Dave完成签到 ,获得积分10
1分钟前
meimale完成签到,获得积分10
1分钟前
1分钟前
龟龟完成签到 ,获得积分10
1分钟前
阳光森林完成签到 ,获得积分10
1分钟前
yuchen12a完成签到 ,获得积分10
1分钟前
Singularity完成签到,获得积分0
1分钟前
有机发布了新的文献求助10
1分钟前
多克特里完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158663
求助须知:如何正确求助?哪些是违规求助? 2809835
关于积分的说明 7883805
捐赠科研通 2468539
什么是DOI,文献DOI怎么找? 1314339
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 601983