已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A 3D framework for segmentation of carotid artery vessel wall and identification of plaque compositions in multi-sequence MR images

颈动脉 分割 子网 鉴定(生物学) 人工智能 颈总动脉 图像分割 医学 易损斑块 计算机科学 模式识别(心理学) 计算机视觉 心脏病学 生物 计算机安全 植物
作者
Jian Wang,Fan Yu,Mengze Zhang,Jie Lu,Zhen Qian
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:116: 102402-102402 被引量:3
标识
DOI:10.1016/j.compmedimag.2024.102402
摘要

Accurately assessing carotid artery wall thickening and identifying risky plaque components are critical for early diagnosis and risk management of carotid atherosclerosis. In this paper, we present a 3D framework for automated segmentation of the carotid artery vessel wall and identification of the compositions of carotid plaque in multi-sequence magnetic resonance (MR) images under the challenge of imperfect manual labeling. Manual labeling is commonly done in 2D slices of these multi-sequence MR images and often lacks perfect alignment across 2D slices and the multiple MR sequences, leading to labeling inaccuracies. To address such challenges, our framework is split into two parts: a segmentation subnetwork and a plaque component identification subnetwork. Initially, a 2D localization network pinpoints the carotid artery's position, extracting the region of interest (ROI) from the input images. Following that, a signed-distance-map-enabled 3D U-net (Çiçek etal, 2016)an adaptation of the nnU-net (Ronneberger and Fischer, 2015) segments the carotid artery vessel wall. This method allows for the concurrent segmentation of the vessel wall area using the signed distance map (SDM) loss (Xue et al., 2020) which regularizes the segmentation surfaces in 3D and reduces erroneous segmentation caused by imperfect manual labels. Subsequently, the ROI of the input images and the obtained vessel wall masks are extracted and combined to obtain the identification results of plaque components in the identification subnetwork. Tailored data augmentation operations are introduced into the framework to reduce the false positive rate of calcification and hemorrhage identification. We trained and tested our proposed method on a dataset consisting of 115 patients, and it achieves an accurate segmentation result of carotid artery wall (0.8459 Dice), which is superior to the best result in published studies (0.7885 Dice). Our approach yielded accuracies of 0.82, 0.73 and 0.88 for the identification of calcification, lipid-rich core and hemorrhage components. Our proposed framework can be potentially used in clinical and research settings to help radiologists perform cumbersome reading tasks and evaluate the risk of carotid plaques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccm应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
mashibeo应助科研通管家采纳,获得10
刚刚
刚刚
pluto应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
mashibeo应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得40
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
共享精神应助xwz626采纳,获得10
1秒前
reece完成签到 ,获得积分10
2秒前
5秒前
钰L发布了新的文献求助10
5秒前
优美的莹芝完成签到,获得积分10
10秒前
全鑫完成签到,获得积分10
11秒前
123关注了科研通微信公众号
11秒前
Ade完成签到,获得积分10
12秒前
哈哈完成签到 ,获得积分10
14秒前
跳跃的鹏飞完成签到 ,获得积分0
15秒前
博弈春秋发布了新的文献求助10
15秒前
科研通AI6应助Jodie采纳,获得10
16秒前
斯文败类应助是阿瑾呀采纳,获得10
17秒前
lmplzzp发布了新的文献求助30
18秒前
鱼鱼籽不认路完成签到 ,获得积分10
19秒前
fx完成签到 ,获得积分10
19秒前
bastien完成签到,获得积分10
21秒前
矜天完成签到 ,获得积分10
21秒前
牛牛的牛牛完成签到 ,获得积分10
22秒前
laity完成签到,获得积分20
22秒前
dly完成签到 ,获得积分10
24秒前
24秒前
25秒前
苏洋完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458682
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296618
捐赠科研通 4489782
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424502