亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A 3D framework for segmentation of carotid artery vessel wall and identification of plaque compositions in multi-sequence MR images

颈动脉 分割 子网 鉴定(生物学) 人工智能 颈总动脉 图像分割 医学 易损斑块 计算机科学 模式识别(心理学) 计算机视觉 心脏病学 生物 计算机安全 植物
作者
Jian Wang,Fan Yu,Mengze Zhang,Jie Lu,Zhen Qian
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:116: 102402-102402 被引量:3
标识
DOI:10.1016/j.compmedimag.2024.102402
摘要

Accurately assessing carotid artery wall thickening and identifying risky plaque components are critical for early diagnosis and risk management of carotid atherosclerosis. In this paper, we present a 3D framework for automated segmentation of the carotid artery vessel wall and identification of the compositions of carotid plaque in multi-sequence magnetic resonance (MR) images under the challenge of imperfect manual labeling. Manual labeling is commonly done in 2D slices of these multi-sequence MR images and often lacks perfect alignment across 2D slices and the multiple MR sequences, leading to labeling inaccuracies. To address such challenges, our framework is split into two parts: a segmentation subnetwork and a plaque component identification subnetwork. Initially, a 2D localization network pinpoints the carotid artery's position, extracting the region of interest (ROI) from the input images. Following that, a signed-distance-map-enabled 3D U-net (Çiçek etal, 2016)an adaptation of the nnU-net (Ronneberger and Fischer, 2015) segments the carotid artery vessel wall. This method allows for the concurrent segmentation of the vessel wall area using the signed distance map (SDM) loss (Xue et al., 2020) which regularizes the segmentation surfaces in 3D and reduces erroneous segmentation caused by imperfect manual labels. Subsequently, the ROI of the input images and the obtained vessel wall masks are extracted and combined to obtain the identification results of plaque components in the identification subnetwork. Tailored data augmentation operations are introduced into the framework to reduce the false positive rate of calcification and hemorrhage identification. We trained and tested our proposed method on a dataset consisting of 115 patients, and it achieves an accurate segmentation result of carotid artery wall (0.8459 Dice), which is superior to the best result in published studies (0.7885 Dice). Our approach yielded accuracies of 0.82, 0.73 and 0.88 for the identification of calcification, lipid-rich core and hemorrhage components. Our proposed framework can be potentially used in clinical and research settings to help radiologists perform cumbersome reading tasks and evaluate the risk of carotid plaques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZaZa完成签到,获得积分10
6秒前
6秒前
张家宁发布了新的文献求助10
12秒前
着急的冬瓜完成签到 ,获得积分10
16秒前
38秒前
可爱的函函应助小小K采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
Suu发布了新的文献求助10
44秒前
bkagyin应助烟消云散采纳,获得10
45秒前
47秒前
兔子完成签到,获得积分10
48秒前
小小K发布了新的文献求助10
52秒前
田様应助不可靠的黏菌采纳,获得10
1分钟前
打打应助zilhua采纳,获得10
1分钟前
CipherSage应助肥猪采纳,获得10
1分钟前
1分钟前
徐矜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
肥猪发布了新的文献求助10
1分钟前
烟消云散发布了新的文献求助10
1分钟前
Jiayouya完成签到,获得积分10
1分钟前
NexusExplorer应助石榴汁的书采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
肥猪完成签到,获得积分10
1分钟前
赘婿应助Zhao0112采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
陈毅发布了新的文献求助10
1分钟前
吴端完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
PP发布了新的文献求助10
2分钟前
2分钟前
耿双贵发布了新的文献求助30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755264
求助须知:如何正确求助?哪些是违规求助? 5492899
关于积分的说明 15381023
捐赠科研通 4893471
什么是DOI,文献DOI怎么找? 2632093
邀请新用户注册赠送积分活动 1579947
关于科研通互助平台的介绍 1535765