材料科学
聚合物电解质
金属锂
锂(药物)
聚合物
电解质
固态
导电聚合物
金属
纳米技术
超分子化学
锂电池
超分子聚合物
高分子科学
化学工程
高分子化学
离子电导率
离子
离子键合
有机化学
工程物理
电极
分子
物理化学
复合材料
冶金
医学
化学
工程类
内分泌学
作者
Shuru Wu,Chengyu Wang,Shuanghui Li,Liming Lin,Qingsong Tong,Mengqi Zhu,Jingzheng Weng
标识
DOI:10.1021/acsami.4c03355
摘要
Uneven lithium plating and low ionic conductivity currently impede the realization of high-capacity rechargeable lithium metal batteries. And the conventional poly(ethylene oxide) (PEO) solid-state electrolytes are unsuitable for high-energy-density Li anode applications due to their low lithium-ion transference number and high reactivity with Li metal, leading to detrimental dendrite formation and potentially hazardous exothermic reactions with the electrolyte. In this study, we employ a supramolecular approach to develop a novel polymer solid-state electrolyte based on poly(vinylidene fluoride) (PVDF) and a novel triblock polymer nanomicrosphere, (poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone), (PCL-PEG-PCL). The abundance of carbonyl and ether-oxygen functional groups in PCL-PEG-PCL enhances the lithium coordination environment within the polymer solid-state electrolyte. Additionally, the original C-F moieties of PVDF form hydrogen bonds with C-H and terminal hydroxyl groups in PCL-PEG-PCL, collectively creating a multichannel fast Li
科研通智能强力驱动
Strongly Powered by AbleSci AI