Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving

元认知 心理学 计算机科学 认知心理学 数学教育 认知 神经科学
作者
Aniket Didolkar,Anirudh Goyal,Nan Rosemary Ke,Siyuan Guo,Michal Valko,Timothy P. Lillicrap,Danilo Jimenez Rezende,Yoshua Bengio,Michael C. Mozer,Sanjeev Arora
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2405.12205
摘要

Metacognitive knowledge refers to humans' intuitive knowledge of their own thinking and reasoning processes. Today's best LLMs clearly possess some reasoning processes. The paper gives evidence that they also have metacognitive knowledge, including ability to name skills and procedures to apply given a task. We explore this primarily in context of math reasoning, developing a prompt-guided interaction procedure to get a powerful LLM to assign sensible skill labels to math questions, followed by having it perform semantic clustering to obtain coarser families of skill labels. These coarse skill labels look interpretable to humans. To validate that these skill labels are meaningful and relevant to the LLM's reasoning processes we perform the following experiments. (a) We ask GPT-4 to assign skill labels to training questions in math datasets GSM8K and MATH. (b) When using an LLM to solve the test questions, we present it with the full list of skill labels and ask it to identify the skill needed. Then it is presented with randomly selected exemplar solved questions associated with that skill label. This improves accuracy on GSM8k and MATH for several strong LLMs, including code-assisted models. The methodology presented is domain-agnostic, even though this article applies it to math problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的溪流完成签到,获得积分10
刚刚
李春生完成签到,获得积分10
刚刚
加油少年完成签到,获得积分10
1秒前
1秒前
美少叔叔完成签到 ,获得积分10
1秒前
2秒前
yw完成签到 ,获得积分10
2秒前
2秒前
jzs完成签到 ,获得积分10
2秒前
cxy完成签到,获得积分10
4秒前
cc完成签到,获得积分10
4秒前
巴达天使完成签到,获得积分10
5秒前
潇洒台灯完成签到,获得积分10
5秒前
Owen应助加油少年采纳,获得10
6秒前
蘑菇完成签到,获得积分10
7秒前
郝郝完成签到,获得积分10
7秒前
QQ完成签到,获得积分10
8秒前
糟糕的翅膀完成签到,获得积分10
8秒前
JJJ发布了新的文献求助30
8秒前
qiangxu完成签到,获得积分10
9秒前
9秒前
Cat4pig完成签到 ,获得积分10
9秒前
HH完成签到 ,获得积分10
10秒前
爆米花应助顺心的水云采纳,获得10
10秒前
叶子完成签到,获得积分10
11秒前
11秒前
星之完成签到,获得积分10
11秒前
诚心熊猫完成签到,获得积分10
13秒前
就是一种水稻的完成签到,获得积分10
14秒前
15秒前
YY完成签到 ,获得积分10
15秒前
yy完成签到 ,获得积分10
16秒前
16秒前
aaaa完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
小高的茯苓糕完成签到,获得积分10
17秒前
Leo完成签到,获得积分10
17秒前
大模型应助JJJ采纳,获得30
17秒前
搜集达人应助甲壳虫采纳,获得10
18秒前
abandon0000完成签到,获得积分20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131