自行车
材料科学
晶界
冶金
微观结构
地理
考古
作者
Kai Huang,Xulin Mu,Yang Ding,Jinhui Li,Manling Sui,Pengfei Yan
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2024-05-18
卷期号:7 (11): 4856-4865
标识
DOI:10.1021/acsaem.4c00632
摘要
Polycrystalline Ni-rich layered lithium transition metal oxides are one of the most promising cathode materials for next-generation high energy density lithium-ion batteries, yet they are still facing many challenges, especially for the cycling induced structural degradations. Intergranular cracking has been identified as one of the most crucial degradations, and grain boundary (GB) engineering has been demonstrated to be an effective countering strategy. Herein, we report a GB modification protocol that can realize not only improved GB stability but also interfacial reaction kinetics, realizing much improved cycling performance of NCM811. The simple and effective solution method can incorporate Ti-dopant into GBs and secondary particle surface, realizing the increase of the capacity retention from 79.5% to 93.5% at 3.0–4.5 V after 100 cycles, and its high voltage (4.7 V) and high temperature (55 °C) cycling stability are also significantly improved. Comprehensive microstructure and electrochemical characterizations of the samples before and after cycling are conducted to reveal the underlying mechanisms, validating that both interfacial degradations and bulk failures have been effectively mitigated. This work provides an effective protocol in the modification of GBs and interfaces of polycrystalline battery materials, which is promising and feasible for industrial mass-production application.
科研通智能强力驱动
Strongly Powered by AbleSci AI