Gait-based identification using wearable multimodal sensing and attention neural networks

可穿戴计算机 鉴定(生物学) 计算机科学 步态 人工神经网络 人机交互 人工智能 物理医学与康复 医学 嵌入式系统 生物 植物
作者
Sijia Yi,Zhanyong Mei,Kamen Ivanov,Zijie Mei,Tong He,Hui Zeng
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:374: 115478-115478 被引量:1
标识
DOI:10.1016/j.sna.2024.115478
摘要

Advances in sensor technology have sparked a wave of innovation and progress in the domain of wearable devices. However, ensuring the security of these devices remains a critical concern for their users. This study proposes a novel identification framework that employs custom multimodal sensing insoles and deep learning techniques to contribute to the data security of wearable devices in a user-transparent manner. The insole incorporates an inertial sensing unit and ten force sensors to capture kinematic and kinetic information. For this implementation, we propose a lightweight multiclass classification deep model based on depthwise separable convolution and an enhanced attention mechanism, which operates over multiple signal channels. In designing the recognition model, we focused on two pivotal factors: (1) achieving an optimal balance between computational complexity and recognition accuracy, which is essential for models that operate on devices with limited computational power, and (2) introducing an enhanced attention mechanism that ensures high recognition accuracy without the stringent requirement for precise temporal alignment between sensor channels, which can be technically challenging to attain. We conducted extensive experiments to validate the proposed approach, utilizing a walking dataset collected from 82 young subjects. The results indicate that when using data from the multimodal sensing insole, a high recognition accuracy of 97.96% for person identification is achieved, with a notably low model parameter count of 22,462. The results support the feasibility and effectiveness of sensing footwear-based gait identification. The proposed approach holds significant potential for enhancing user authentication methods across a broad range of scenarios while ensuring transparency and user-friendliness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhy完成签到,获得积分10
1秒前
bzy发布了新的文献求助10
1秒前
1秒前
风趣秋白完成签到,获得积分10
1秒前
情怀应助tanmeng77采纳,获得10
1秒前
若空完成签到 ,获得积分10
2秒前
典雅又夏发布了新的文献求助10
2秒前
XIXI完成签到,获得积分10
2秒前
3秒前
夏夏发布了新的文献求助10
3秒前
666完成签到,获得积分10
3秒前
3秒前
tzy完成签到,获得积分10
3秒前
Jackcaosky发布了新的文献求助200
3秒前
tt完成签到 ,获得积分10
4秒前
tennisgirl发布了新的文献求助30
4秒前
DDTT发布了新的文献求助10
5秒前
Li发布了新的文献求助10
6秒前
xiaozhang完成签到,获得积分10
6秒前
科研小民工应助Jinji采纳,获得200
6秒前
7秒前
Elaine完成签到,获得积分10
7秒前
h41692011完成签到 ,获得积分10
7秒前
斯文败类应助圆圆采纳,获得30
8秒前
李健的小迷弟应助7777777采纳,获得10
8秒前
涛浪驳回了田様应助
8秒前
8秒前
8秒前
9秒前
9秒前
个木发布了新的文献求助10
9秒前
上官若男应助SY采纳,获得10
10秒前
不易BY完成签到,获得积分10
10秒前
ee关闭了ee文献求助
10秒前
Ysh完成签到,获得积分20
10秒前
拼搏念蕾完成签到 ,获得积分10
10秒前
一页完成签到,获得积分10
11秒前
眯眯眼的衬衫应助JiaqiLiu采纳,获得10
11秒前
科研通AI2S应助VDC采纳,获得10
11秒前
wwt发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678