Development of a model for the prediction of biological age

生物年龄 支持向量机 机器学习 生物学数据 决策树 线性模型 人工智能 预测建模 回归 计算机科学 回归分析 线性回归 生物网络 统计 数学 生物信息学 生物 医学 老年学
作者
Xiaolin Ni,Hanqing Zhao,Rongqiao Li,Huabin Su,Juan Jiao,Ze Yang,Yuan Lv,Guo‐Fang Pang,Meiqi Sun,Hu C,Huiping Yuan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107686-107686 被引量:1
标识
DOI:10.1016/j.cmpb.2023.107686
摘要

: Rates of aging vary markedly among individuals, and biological age serves as a more reliable predictor of current health status than does chronological age. As such, the ability to predict biological age can support appropriate and timely active interventions aimed at improving coping with the aging process. However, the aging process is highly complex and multifactorial. Therefore, it is more scientific to construct a prediction model for biological age from multiple dimensions systematically. : Physiological and biochemical parameters were evaluated to gauge individual health status. Then, age-related indices were screened for inclusion in a model capable of predicting biological age. For subsequent modeling analyses, samples were divided into training and validation sets for subsequent deep learning model-based analyses (e.g. linear regression, lasso model, ridge regression, bayesian ridge regression, elasticity network, k-nearest neighbor, linear support vector machine, support vector machine, and decision tree models, and so on), with the model exhibiting the best ability to predict biological age thereby being identified. : First, we defined the individual biological age according to the individual health status. Then, after 22 candidate indices (DNA methylation, leukocyte telomere length, and specific physiological and biochemical indicators) were screened for inclusion in a model capable of predicting biological age, 14 age-related indices and gender were used to construct a model via the Bagged Trees method, which was found to be the most reliable qualitative prediction model for biological age (accuracy=75.6%, AUC=0.84) by comparing 30 different classification algorithm models. The most reliable quantitative predictive model for biological age was found to be the model developed using the Rational Quadratic method (R2=0.85, RMSE=8.731 years) by comparing 24 regression algorithm models. : Both qualitative model and quantitative model of biological age were successfully constructed from a multi-dimensional and systematic perspective. The predictive performance of our models was similar in both smaller and larger datasets, making it well-suited to predicting a given individual's biological age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Delili完成签到,获得积分10
2秒前
斯文的如雪完成签到,获得积分10
2秒前
练习者发布了新的文献求助10
3秒前
汤圆好吃完成签到,获得积分10
3秒前
执着完成签到,获得积分10
4秒前
5秒前
传奇3应助Captain采纳,获得10
5秒前
小张同学发布了新的文献求助10
5秒前
Delili发布了新的文献求助10
6秒前
宋菲菲菲菲完成签到 ,获得积分10
7秒前
小狗软糖完成签到 ,获得积分10
7秒前
7秒前
赘婿应助小王爱喝可乐采纳,获得10
8秒前
Tayzon发布了新的文献求助20
9秒前
情怀应助失眠的香蕉采纳,获得30
9秒前
13秒前
zhang发布了新的文献求助10
13秒前
13秒前
微醺我本天涯客完成签到,获得积分10
15秒前
歆兴欣完成签到 ,获得积分10
15秒前
15秒前
Singularity应助张小龙采纳,获得10
15秒前
Captain发布了新的文献求助10
16秒前
16秒前
Youtenter完成签到,获得积分10
17秒前
研友_LN23OL发布了新的文献求助10
18秒前
桐桐应助飞竹天寻采纳,获得10
18秒前
DDD42发布了新的文献求助30
19秒前
19秒前
是它完成签到 ,获得积分10
19秒前
20秒前
21秒前
Captain完成签到,获得积分10
21秒前
顾矜应助允怡采纳,获得10
23秒前
23秒前
小霞完成签到 ,获得积分10
26秒前
乐正夜白完成签到,获得积分10
26秒前
superyang发布了新的文献求助10
27秒前
绝尘发布了新的文献求助10
27秒前
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792710
关于积分的说明 7803941
捐赠科研通 2448986
什么是DOI,文献DOI怎么找? 1303011
科研通“疑难数据库(出版商)”最低求助积分说明 626717
版权声明 601244