Development of a model for the prediction of biological age

生物年龄 支持向量机 机器学习 生物学数据 决策树 线性模型 人工智能 预测建模 回归 计算机科学 回归分析 线性回归 生物网络 统计 数学 生物信息学 生物 医学 老年学
作者
Xiaolin Ni,Hanqing Zhao,Rongqiao Li,Huabin Su,Juan Jiao,Ze Yang,Yuan Lv,Guo‐Fang Pang,Meiqi Sun,Hu C,Huiping Yuan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107686-107686 被引量:1
标识
DOI:10.1016/j.cmpb.2023.107686
摘要

: Rates of aging vary markedly among individuals, and biological age serves as a more reliable predictor of current health status than does chronological age. As such, the ability to predict biological age can support appropriate and timely active interventions aimed at improving coping with the aging process. However, the aging process is highly complex and multifactorial. Therefore, it is more scientific to construct a prediction model for biological age from multiple dimensions systematically. : Physiological and biochemical parameters were evaluated to gauge individual health status. Then, age-related indices were screened for inclusion in a model capable of predicting biological age. For subsequent modeling analyses, samples were divided into training and validation sets for subsequent deep learning model-based analyses (e.g. linear regression, lasso model, ridge regression, bayesian ridge regression, elasticity network, k-nearest neighbor, linear support vector machine, support vector machine, and decision tree models, and so on), with the model exhibiting the best ability to predict biological age thereby being identified. : First, we defined the individual biological age according to the individual health status. Then, after 22 candidate indices (DNA methylation, leukocyte telomere length, and specific physiological and biochemical indicators) were screened for inclusion in a model capable of predicting biological age, 14 age-related indices and gender were used to construct a model via the Bagged Trees method, which was found to be the most reliable qualitative prediction model for biological age (accuracy=75.6%, AUC=0.84) by comparing 30 different classification algorithm models. The most reliable quantitative predictive model for biological age was found to be the model developed using the Rational Quadratic method (R2=0.85, RMSE=8.731 years) by comparing 24 regression algorithm models. : Both qualitative model and quantitative model of biological age were successfully constructed from a multi-dimensional and systematic perspective. The predictive performance of our models was similar in both smaller and larger datasets, making it well-suited to predicting a given individual's biological age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dadii发布了新的文献求助10
刚刚
1秒前
韩涵发布了新的文献求助10
1秒前
1秒前
2秒前
月下荷花发布了新的文献求助10
2秒前
3秒前
4秒前
共享精神应助LiangHu采纳,获得10
4秒前
flippedaaa发布了新的文献求助10
5秒前
5秒前
胡宇发布了新的文献求助10
5秒前
kkk发布了新的文献求助10
6秒前
6秒前
6秒前
215858687发布了新的文献求助10
8秒前
健康的雨灵完成签到,获得积分10
8秒前
ZQ发布了新的文献求助10
9秒前
犹豫的踏歌完成签到,获得积分10
9秒前
白杨木影子被拉长完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
闪闪采梦发布了新的文献求助10
11秒前
胡宇完成签到,获得积分10
13秒前
我是老大应助flippedaaa采纳,获得10
15秒前
zz完成签到,获得积分10
15秒前
nicelily完成签到 ,获得积分10
16秒前
entity完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
17秒前
Julien完成签到,获得积分10
17秒前
18秒前
强强强发布了新的文献求助10
19秒前
轻松雁蓉发布了新的文献求助10
20秒前
踏雪飞鸿发布了新的文献求助10
20秒前
李健的小迷弟应助Julien采纳,获得10
21秒前
22秒前
yq完成签到,获得积分10
23秒前
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980408
求助须知:如何正确求助?哪些是违规求助? 3524319
关于积分的说明 11220990
捐赠科研通 3261764
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879424
科研通“疑难数据库(出版商)”最低求助积分说明 807261