Development of a model for the prediction of biological age

生物年龄 支持向量机 机器学习 生物学数据 决策树 线性模型 人工智能 预测建模 回归 计算机科学 回归分析 线性回归 生物网络 统计 数学 生物信息学 生物 医学 老年学
作者
Xiaolin Ni,Hanqing Zhao,Rongqiao Li,Huabin Su,Juan Jiao,Ze Yang,Yuan Lv,Guo‐Fang Pang,Meiqi Sun,Hu C,Huiping Yuan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107686-107686 被引量:1
标识
DOI:10.1016/j.cmpb.2023.107686
摘要

: Rates of aging vary markedly among individuals, and biological age serves as a more reliable predictor of current health status than does chronological age. As such, the ability to predict biological age can support appropriate and timely active interventions aimed at improving coping with the aging process. However, the aging process is highly complex and multifactorial. Therefore, it is more scientific to construct a prediction model for biological age from multiple dimensions systematically. : Physiological and biochemical parameters were evaluated to gauge individual health status. Then, age-related indices were screened for inclusion in a model capable of predicting biological age. For subsequent modeling analyses, samples were divided into training and validation sets for subsequent deep learning model-based analyses (e.g. linear regression, lasso model, ridge regression, bayesian ridge regression, elasticity network, k-nearest neighbor, linear support vector machine, support vector machine, and decision tree models, and so on), with the model exhibiting the best ability to predict biological age thereby being identified. : First, we defined the individual biological age according to the individual health status. Then, after 22 candidate indices (DNA methylation, leukocyte telomere length, and specific physiological and biochemical indicators) were screened for inclusion in a model capable of predicting biological age, 14 age-related indices and gender were used to construct a model via the Bagged Trees method, which was found to be the most reliable qualitative prediction model for biological age (accuracy=75.6%, AUC=0.84) by comparing 30 different classification algorithm models. The most reliable quantitative predictive model for biological age was found to be the model developed using the Rational Quadratic method (R2=0.85, RMSE=8.731 years) by comparing 24 regression algorithm models. : Both qualitative model and quantitative model of biological age were successfully constructed from a multi-dimensional and systematic perspective. The predictive performance of our models was similar in both smaller and larger datasets, making it well-suited to predicting a given individual's biological age.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助小葡萄采纳,获得20
刚刚
刚刚
linyudie发布了新的文献求助30
1秒前
1秒前
曾阿牛发布了新的文献求助10
3秒前
3秒前
甜美幻露发布了新的文献求助10
3秒前
4秒前
4秒前
天涯发布了新的文献求助10
4秒前
4秒前
4秒前
Xiebro完成签到 ,获得积分10
5秒前
小可不怕困难完成签到,获得积分10
5秒前
zhoushuhui完成签到 ,获得积分10
6秒前
潇潇发布了新的文献求助10
7秒前
张文静发布了新的文献求助10
7秒前
7秒前
悦耳青梦发布了新的文献求助10
7秒前
忧郁映之发布了新的文献求助10
8秒前
8秒前
Hepatology完成签到,获得积分10
8秒前
Tysonqu发布了新的文献求助10
9秒前
9秒前
xlh发布了新的文献求助10
9秒前
张子翀完成签到 ,获得积分10
9秒前
斯文败类应助欲扬先抑采纳,获得10
9秒前
wwww发布了新的文献求助10
11秒前
shiqi关注了科研通微信公众号
11秒前
11秒前
香蕉觅云应助轻松的语海采纳,获得30
12秒前
量子星尘发布了新的文献求助10
12秒前
开朗的宛丝完成签到 ,获得积分10
12秒前
房房不慌完成签到 ,获得积分10
12秒前
12秒前
13秒前
daisy发布了新的文献求助10
13秒前
清风揽月发布了新的文献求助10
14秒前
钱大大发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601468
求助须知:如何正确求助?哪些是违规求助? 4686975
关于积分的说明 14846893
捐赠科研通 4681115
什么是DOI,文献DOI怎么找? 2539378
邀请新用户注册赠送积分活动 1506298
关于科研通互助平台的介绍 1471297