亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transitioning to multi-dimensional estimation of visual distraction and its safety effects under automated driving: A spatiotemporal and directional estimation approach

分散注意力 计算机科学 毒物控制 目视检查 计算机视觉 模拟 心理学 认知心理学 医学 环境卫生
作者
Song Wang,Zhixia Li,Chao Zeng,Jia Hu
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:153: 104212-104212 被引量:1
标识
DOI:10.1016/j.trc.2023.104212
摘要

Traditional methodologies for measuring visual distraction have been limiting in their approaches, treating distraction as a one-dimensional variable. This has been accomplished either by categorizing distraction as a binary variable or using surrogate measurements, such as reaction time in response to non-driving related tasks, which follow the procedures of measuring distraction from psychology. Furthermore, as human-vehicle interaction (HVI) under automated driving has the potential to provide safety information and bring visual distraction simultaneously, there lacks an investigation on the quantitative relationship between distraction and safety due to the restrained methodologies in measuring visual distraction. As HVI-induced driver distraction plays a critical role in determining safe driving under automated driving, a methodology is highly needed to comprehensively measure the visual distraction under automated driving so that its impact on safety can be further investigated. Therefore, sticking to the definition of visual distraction, this research aims to (1) improve the existing methodology in measuring HVI-induced driver distraction under automated driving by focusing on visual distraction and mathematically describing it from spatiotemporal and directional dimensions; (2) theoretically investigate how the quantified visual distraction influences driving safety and (3) quantify the relationship between distraction and safety with introducing the “distraction-safety” ratio. Drivers’ fixation behaviors are used in quantifying visual distraction, which is measured by spatiotemporal and directional relationships between drivers’ visual attention and the attention that indicates “zero distraction”. Three newly added performance measures in quantifying HVI-induced visual distraction are real-time magnitudes, real-time directions, and intensities (cumulation of magnitudes over time). To validate the proposed methods, a verification study was conducted by recruiting drivers to test automated driving under Level 3 automation. Drivers are required to wear an eye-tracker and go through two scenarios interacting with jaywalkers where takeover actions are needed with two takeover warnings (“visual-only” and “visual & audible”). Per past studies, takeover time was measured in representing distraction level. As a result, this study confirms the validity of the proposed methods by revealing the significant and positive correlations between the measured distraction intensity and the takeover time. Discussions of the quantified visual distraction from the spatiotemporal and directional perspective further enhance the understanding of HVI-induced driver distraction under automated driving through multiple dimensions. Furthermore, this research reveals how distracted driving affects safety under automated driving through the takeover performance. Thresholds under visual distraction magnitudes and degrees that lead to traffic conflicts were identified. More importantly, a “distraction-safety” ratio that quantifies the relationship between visual distraction and safety benefits is proposed. The results suggest that the “visual & audible” is more effective in significantly enhancing safety while aggregating a significantly smaller amount of visual distraction. The contribution of this research is to re-define the methodological approach of measuring visual distraction by (1) measuring distraction multi-dimensionally and (2) establishing a “distraction-safety” system in quantitatively assessing the balance of safety benefits and the HVI-induced visual distraction magnitude under automated driving environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
26秒前
duanjun123完成签到,获得积分10
44秒前
Demi_Ming完成签到,获得积分10
44秒前
duanjun123发布了新的文献求助20
48秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
2分钟前
冷艳的灭龙完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得30
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
3分钟前
星际舟完成签到,获得积分10
3分钟前
比比谁的速度快给小幻的求助进行了留言
4分钟前
4分钟前
香蕉念薇发布了新的文献求助10
4分钟前
swayqur发布了新的文献求助30
4分钟前
所所应助卡卡采纳,获得10
4分钟前
wanjingwan完成签到 ,获得积分10
4分钟前
swayqur完成签到,获得积分10
4分钟前
学术小垃圾应助香蕉念薇采纳,获得10
4分钟前
4分钟前
fkdbdy发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
科研通AI2S应助等待夏旋采纳,获得10
5分钟前
Hello应助跳跃采纳,获得10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
小二郎应助科研通管家采纳,获得10
5分钟前
5分钟前
传奇3应助科研通管家采纳,获得10
5分钟前
小蘑菇应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015118
求助须知:如何正确求助?哪些是违规求助? 3555096
关于积分的说明 11317842
捐赠科研通 3288577
什么是DOI,文献DOI怎么找? 1812266
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983