Deep Reinforcement Learning Perspectives on Improving Reliable Transmissions in IoT Networks: Problem Formulation, Parameter Choices, Challenges, and Future Directions

强化学习 计算机科学 网络拥塞 领域(数学分析) 分布式计算 物联网 控制(管理) 人工智能 计算机网络 机器学习 计算机安全 数学分析 数学 网络数据包
作者
Melchizedek Alipio,Miroslav Bureš
出处
期刊:Internet of things [Elsevier BV]
卷期号:23: 100846-100846 被引量:4
标识
DOI:10.1016/j.iot.2023.100846
摘要

The majority of communication protocols used in IoT networks for caching and congestion control techniques were rule-based which implies that these protocols are dependent on explicitly stated static models. To solve this issue, techniques are becoming more adaptive to changes in the network environment by incorporating a learning-based approach using Machine Learning (ML) and Deep Learning (DL). Recent surveys and review papers have covered topics on the use of ML and DL in either caching or congestion control techniques used in various types of networks. However, there is not an article in the literature dedicated to surveying the design of caching and congestion control mechanisms in IoT networks from the perspective of a Deep Reinforcement Learning (DRL) problem. Hence, this work aimed to survey the state-of-the-art DRL-based caching and congestion control techniques in IoT networks from 2019 to 2023. It also presented general frameworks for DRL-based caching and congestion control techniques based on surveyed works as a baseline for designing future protocols in IoT networks. Moreover, this paper classified the parameter choices of surveyed DRL-based techniques and identified the issues and challenges behind these techniques. Finally, a discussion of the possible future directions of this research domain was presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎黎原上草完成签到,获得积分10
刚刚
wzx发布了新的文献求助10
4秒前
星辰大海应助liu采纳,获得10
5秒前
8秒前
9秒前
oh应助molly雨轩采纳,获得10
10秒前
Meimei完成签到,获得积分10
10秒前
小蘑菇应助一米阳光采纳,获得10
11秒前
甜甜圈发布了新的文献求助10
13秒前
科研通AI5应助wzx采纳,获得10
13秒前
Meimei发布了新的文献求助40
15秒前
16秒前
16秒前
赘婿应助zxldylan采纳,获得10
18秒前
科研通AI2S应助青思采纳,获得10
18秒前
沉默的灵枫完成签到,获得积分10
21秒前
21秒前
22秒前
撒大苏打发布了新的文献求助10
23秒前
Chem发布了新的文献求助10
25秒前
allsan完成签到,获得积分10
26秒前
一米阳光发布了新的文献求助10
26秒前
丘比特应助科研通管家采纳,获得10
27秒前
彭于晏应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
Orange应助科研通管家采纳,获得10
27秒前
木木应助科研通管家采纳,获得10
27秒前
深情安青应助科研通管家采纳,获得10
27秒前
汉堡包应助科研通管家采纳,获得10
28秒前
yar应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
缥缈问柳应助科研通管家采纳,获得10
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
小蘑菇应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
思源应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
Owen应助光亮的怜容采纳,获得30
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998871
求助须知:如何正确求助?哪些是违规求助? 3538355
关于积分的说明 11273977
捐赠科研通 3277299
什么是DOI,文献DOI怎么找? 1807509
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075