胰腺
人工胰腺
医学
人工智能
信号(编程语言)
计算机科学
内科学
内分泌学
糖尿病
程序设计语言
1型糖尿病
作者
Emanuel Vigia,Luís Ramalhete,Rita A. Ribeiro,Inês Barros,Beatriz Chumbinho,Edite Filipe,Ana Pena,L. Bicho,Ana Marta Nobre,Sofia Carrelha,Mafalda Sobral,Jorge Lamelas,João Santos Coelho,Aníbal Ferreira,Hugo P. Marques
摘要
Pancreas transplantation is currently the only treatment that can re-establish normal endocrine pancreatic function. Despite all efforts, pancreas allograft survival and rejection remain major clinical problems. The purpose of this study was to identify features that could signal patients at risk of pancreas allograft rejection.We collected 74 features from 79 patients who underwent simultaneous pancreas-kidney transplantation (SPK) and used two widely-applicable classification methods, the Naive Bayesian Classifier and Support Vector Machine, to build predictive models. We used the area under the receiver operating characteristic curve and classification accuracy to evaluate the predictive performance via leave-one-out cross-validation.Rejection events were identified in 13 SPK patients (17.8%). In feature selection approach, it was possible to identify 10 features, namely: previous treatment for diabetes mellitus with long-term Insulin (U/I/day), type of dialysis (peritoneal dialysis, hemodialysis, or pre-emptive), de novo DSA, vPRA_Pre-Transplant (%), donor blood glucose, pancreas donor risk index (pDRI), recipient height, dialysis time (days), warm ischemia (minutes), recipient of intensive care (days). The results showed that the Naive Bayes and Support Vector Machine classifiers prediction performed very well, with an AUROC and classification accuracy of 0.97 and 0.87, respectively, in the first model and 0.96 and 0.94 in the second model.Our results indicated that it is feasible to develop successful classifiers for the prediction of graft rejection. The Naive Bayesian generated nomogram can be used for rejection probability prediction, thus supporting clinical decision making.
科研通智能强力驱动
Strongly Powered by AbleSci AI