范德瓦尔斯力
异质结
密度泛函理论
从头算
Atom(片上系统)
从头算量子化学方法
范德瓦尔斯半径
材料科学
润滑油
原子物理学
原子单位
凝聚态物理
物理
化学
计算化学
复合材料
分子
嵌入式系统
量子力学
计算机科学
作者
Moumita Mukherjee,Sucharita Mandal,Ayan Datta
标识
DOI:10.1002/asia.202300525
摘要
Abstract Friction at the atomic scale is determined for three different carbon nitride structures namely C 2 N/C 2 N, C 6 N 6 /C 6 N 6 and C 6 N 6 /C 2 N employing ab‐initio density functional theory (DFT). The sliding path along the lowest energy corrugations determines the static frictional forces. Both the homo‐layer structures (C 2 N/C 2 N and C 6 N 6 /C 6 N 6 ) have higher corrugation energy and correspondingly higher static lateral forces with respect to the hetero‐layer structure (C 2 N/C 6 N 6 ). The corrugation energy for the C 2 N/C 6 N 6 heterostructure ( =0.29 meV/atom) is one‐order lower than C 2 N/C 2 N ( =2.08 meV/atom) and C 6 N 6 /C 6 N 6 ( =4.37 meV/atom). Such a significantly lower corrugation energy for the heterostructure arises due to the reduced fluctuation in the interfacial charge density along the sliding pathway. Moreover, the change in the interlayer distance along the sliding pathway is only 0.2 Å for the heterostructure while its 0.3 Å and 0.4 Å for C 2 N and C 6 N 6 homo‐layers respectively. The friction coefficients (F L /F N , F L =static lateral force; F N =normal force) decrease with increasing load for all the systems with the lowest value (0.04) for C 2 N/C 6 N 6 at 2 GPa. The van der Waals heterostructures are, therefore, predicted to be highly efficient lubricant materials for reducing friction at the atomic scale.
科研通智能强力驱动
Strongly Powered by AbleSci AI