TSD-Depth: Using transformers and self-distilling for self-supervised indoor depth estimation

计算机科学 推论 人工智能 变压器 编码器 单眼 融合机制 模式识别(心理学) 计算机工程 算法 融合 语言学 量子力学 脂质双层融合 操作系统 物理 哲学 电压
作者
Chen Lv,Chenggong Han,Junhui Chen,Deqiang Cheng,Jiansheng Qian
出处
期刊:Optik [Elsevier BV]
卷期号:288: 171219-171219 被引量:2
标识
DOI:10.1016/j.ijleo.2023.171219
摘要

Supervised monocular depth estimation has always been one of the most important tasks in computer vision. With the convolution module as a basic operator, the U-shaped network architecture has become the de facto standard and has achieved tremendous success. However, due to the limited receptive field of the convolution operation, the CNNs are generally inferior in explicitly modeling the long-range dependencies. Originally proposed for natural language processing, the transformers are designed for performing sequence-to-sequence predictions based on global self-attention mechanism. Therefore, the transformers can capture long-range dependencies. However, they have limited localization abilities due to insufficient low-level details. In this work, we propose a TSD-Depth model, which merits both the transformers and the CNNs, as a strong alternative for self-supervised monocular depth estimation. The proposed model simultaneously extracts the global contextual information and local spatial detail features. Furthermore, by designing the hybrid encoder connection method and proper-sized transformer module, the global and local information can more effectively interact. In addition, a local multi-scale fusion block is first proposed to refine the fine-grained details. More importantly, the knowledge is learned by using self-distillation to skip the multi-scale fusion block concatenated with the encoder at the inference time, computed only during the training process for minimal overhead. The experimental results on NYU-v2 and ScanNet datasets show that the proposed TSD-Depth achieves the best performance as compared to the previous state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
glomming完成签到 ,获得积分10
3秒前
通宵不是熬夜完成签到,获得积分20
3秒前
3秒前
研友_VZG7GZ应助PZL采纳,获得10
3秒前
4秒前
ANGEK完成签到,获得积分10
5秒前
zk完成签到,获得积分10
5秒前
zz发布了新的文献求助10
6秒前
九转科研蛊完成签到,获得积分10
6秒前
Owen应助王先生采纳,获得10
7秒前
7秒前
慕青应助Jiao采纳,获得10
8秒前
健忘的飞雪完成签到,获得积分10
9秒前
洋芋锅巴发布了新的文献求助10
10秒前
11秒前
Coraline发布了新的文献求助20
12秒前
元友容完成签到 ,获得积分10
12秒前
Yn_发布了新的文献求助10
13秒前
14秒前
杰尼龟完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
19秒前
土豆侠完成签到 ,获得积分10
19秒前
19秒前
请叫我风吹麦浪应助ZYN采纳,获得10
19秒前
务实元风发布了新的文献求助10
20秒前
20秒前
Jiao发布了新的文献求助10
20秒前
dhyzf1214完成签到,获得积分10
20秒前
orixero应助机智幻嫣采纳,获得10
22秒前
23秒前
24秒前
25秒前
李思超完成签到 ,获得积分10
25秒前
allton发布了新的文献求助10
27秒前
27秒前
Chris发布了新的文献求助10
28秒前
nipangle完成签到,获得积分20
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075