TSD-Depth: Using transformers and self-distilling for self-supervised indoor depth estimation

计算机科学 推论 人工智能 变压器 编码器 单眼 融合机制 模式识别(心理学) 计算机工程 算法 融合 语言学 量子力学 脂质双层融合 操作系统 物理 哲学 电压
作者
Chen Lv,Chenggong Han,Junhui Chen,Deqiang Cheng,Jiansheng Qian
出处
期刊:Optik [Elsevier BV]
卷期号:288: 171219-171219 被引量:2
标识
DOI:10.1016/j.ijleo.2023.171219
摘要

Supervised monocular depth estimation has always been one of the most important tasks in computer vision. With the convolution module as a basic operator, the U-shaped network architecture has become the de facto standard and has achieved tremendous success. However, due to the limited receptive field of the convolution operation, the CNNs are generally inferior in explicitly modeling the long-range dependencies. Originally proposed for natural language processing, the transformers are designed for performing sequence-to-sequence predictions based on global self-attention mechanism. Therefore, the transformers can capture long-range dependencies. However, they have limited localization abilities due to insufficient low-level details. In this work, we propose a TSD-Depth model, which merits both the transformers and the CNNs, as a strong alternative for self-supervised monocular depth estimation. The proposed model simultaneously extracts the global contextual information and local spatial detail features. Furthermore, by designing the hybrid encoder connection method and proper-sized transformer module, the global and local information can more effectively interact. In addition, a local multi-scale fusion block is first proposed to refine the fine-grained details. More importantly, the knowledge is learned by using self-distillation to skip the multi-scale fusion block concatenated with the encoder at the inference time, computed only during the training process for minimal overhead. The experimental results on NYU-v2 and ScanNet datasets show that the proposed TSD-Depth achieves the best performance as compared to the previous state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助球ball采纳,获得10
1秒前
1秒前
情怀应助hhh采纳,获得10
2秒前
木木彡发布了新的文献求助10
3秒前
Ava应助ZXH采纳,获得10
4秒前
dan1029发布了新的文献求助10
5秒前
千葉完成签到,获得积分20
5秒前
5秒前
酷波er应助blue采纳,获得10
5秒前
bkagyin应助GQ采纳,获得30
6秒前
疗效发布了新的文献求助30
6秒前
6秒前
7秒前
无蝉的夏天完成签到,获得积分10
7秒前
9秒前
小辉辉发布了新的文献求助10
9秒前
北方有俞完成签到,获得积分10
9秒前
xzh发布了新的文献求助10
10秒前
研友_VZG7GZ应助陈1采纳,获得10
10秒前
11秒前
11秒前
12秒前
大咖完成签到,获得积分10
12秒前
圆圆圆完成签到,获得积分10
12秒前
蓝天应助一见喜采纳,获得10
13秒前
天天快乐应助疗效采纳,获得10
14秒前
YY再摆烂完成签到,获得积分10
14秒前
serein发布了新的文献求助10
14秒前
ralph_liu完成签到,获得积分10
14秒前
zzxx发布了新的文献求助10
14秒前
liuliu梅完成签到,获得积分10
15秒前
ZXH发布了新的文献求助10
15秒前
16秒前
ykk发布了新的文献求助10
16秒前
16秒前
17秒前
lezbj99发布了新的文献求助10
17秒前
英姑应助圆圆圆采纳,获得10
18秒前
浮游应助木木彡采纳,获得10
18秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888