TSD-Depth: Using transformers and self-distilling for self-supervised indoor depth estimation

计算机科学 推论 人工智能 变压器 编码器 单眼 融合机制 模式识别(心理学) 计算机工程 算法 融合 语言学 量子力学 脂质双层融合 操作系统 物理 哲学 电压
作者
Chen Lv,Chenggong Han,Junhui Chen,Deqiang Cheng,Jiansheng Qian
出处
期刊:Optik [Elsevier BV]
卷期号:288: 171219-171219 被引量:2
标识
DOI:10.1016/j.ijleo.2023.171219
摘要

Supervised monocular depth estimation has always been one of the most important tasks in computer vision. With the convolution module as a basic operator, the U-shaped network architecture has become the de facto standard and has achieved tremendous success. However, due to the limited receptive field of the convolution operation, the CNNs are generally inferior in explicitly modeling the long-range dependencies. Originally proposed for natural language processing, the transformers are designed for performing sequence-to-sequence predictions based on global self-attention mechanism. Therefore, the transformers can capture long-range dependencies. However, they have limited localization abilities due to insufficient low-level details. In this work, we propose a TSD-Depth model, which merits both the transformers and the CNNs, as a strong alternative for self-supervised monocular depth estimation. The proposed model simultaneously extracts the global contextual information and local spatial detail features. Furthermore, by designing the hybrid encoder connection method and proper-sized transformer module, the global and local information can more effectively interact. In addition, a local multi-scale fusion block is first proposed to refine the fine-grained details. More importantly, the knowledge is learned by using self-distillation to skip the multi-scale fusion block concatenated with the encoder at the inference time, computed only during the training process for minimal overhead. The experimental results on NYU-v2 and ScanNet datasets show that the proposed TSD-Depth achieves the best performance as compared to the previous state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
嘿嘿嘿发布了新的文献求助10
刚刚
刚刚
1秒前
小肥鑫发布了新的文献求助10
2秒前
3秒前
scoot完成签到 ,获得积分10
3秒前
wjx关闭了wjx文献求助
3秒前
3秒前
蛋挞完成签到,获得积分20
3秒前
hhh完成签到 ,获得积分10
5秒前
爱学习发布了新的文献求助10
5秒前
张张发布了新的文献求助10
5秒前
wangsai0532完成签到,获得积分10
6秒前
6秒前
SciGPT应助1111111111111111采纳,获得10
6秒前
6秒前
Aaron完成签到 ,获得积分10
7秒前
xx完成签到,获得积分10
7秒前
嘿嘿嘿发布了新的文献求助10
7秒前
晗晗发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助小肥鑫采纳,获得10
8秒前
万能图书馆应助Joey采纳,获得10
10秒前
10秒前
11秒前
香蕉觅云应助EmmaLin采纳,获得10
11秒前
11秒前
77发布了新的文献求助10
12秒前
13秒前
FashionBoy应助泠漓采纳,获得10
13秒前
13秒前
13秒前
于大强完成签到,获得积分10
14秒前
共享精神应助晗晗采纳,获得10
15秒前
终抵星空发布了新的文献求助10
15秒前
轻松的妍发布了新的文献求助10
15秒前
深情安青应助嘿嘿嘿采纳,获得10
15秒前
搜集达人应助lvlv采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676