TSD-Depth: Using transformers and self-distilling for self-supervised indoor depth estimation

计算机科学 推论 人工智能 变压器 编码器 单眼 融合机制 模式识别(心理学) 计算机工程 算法 融合 语言学 量子力学 脂质双层融合 操作系统 物理 哲学 电压
作者
Chen Lv,Chenggong Han,Junhui Chen,Deqiang Cheng,Jiansheng Qian
出处
期刊:Optik [Elsevier]
卷期号:288: 171219-171219 被引量:2
标识
DOI:10.1016/j.ijleo.2023.171219
摘要

Supervised monocular depth estimation has always been one of the most important tasks in computer vision. With the convolution module as a basic operator, the U-shaped network architecture has become the de facto standard and has achieved tremendous success. However, due to the limited receptive field of the convolution operation, the CNNs are generally inferior in explicitly modeling the long-range dependencies. Originally proposed for natural language processing, the transformers are designed for performing sequence-to-sequence predictions based on global self-attention mechanism. Therefore, the transformers can capture long-range dependencies. However, they have limited localization abilities due to insufficient low-level details. In this work, we propose a TSD-Depth model, which merits both the transformers and the CNNs, as a strong alternative for self-supervised monocular depth estimation. The proposed model simultaneously extracts the global contextual information and local spatial detail features. Furthermore, by designing the hybrid encoder connection method and proper-sized transformer module, the global and local information can more effectively interact. In addition, a local multi-scale fusion block is first proposed to refine the fine-grained details. More importantly, the knowledge is learned by using self-distillation to skip the multi-scale fusion block concatenated with the encoder at the inference time, computed only during the training process for minimal overhead. The experimental results on NYU-v2 and ScanNet datasets show that the proposed TSD-Depth achieves the best performance as compared to the previous state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AOI0504完成签到,获得积分10
刚刚
墨染完成签到,获得积分10
刚刚
薛厌完成签到,获得积分10
1秒前
小橙子发布了新的文献求助10
2秒前
javalin完成签到,获得积分10
2秒前
LiShin发布了新的文献求助10
2秒前
2秒前
2秒前
叫滚滚发布了新的文献求助10
3秒前
坚强的樱发布了新的文献求助10
3秒前
桐桐应助zmmmm采纳,获得10
3秒前
5秒前
小敦发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
翔哥发布了新的文献求助10
6秒前
阿航完成签到,获得积分10
6秒前
情怀应助Mrrr采纳,获得10
7秒前
7秒前
调研昵称发布了新的文献求助10
8秒前
淡定念波完成签到,获得积分10
8秒前
8秒前
卷卷王发布了新的文献求助10
9秒前
9秒前
天天快乐应助phz采纳,获得10
10秒前
lili完成签到,获得积分10
11秒前
sakurai应助通~采纳,获得10
11秒前
11秒前
11秒前
柴火烧叽发布了新的文献求助10
12秒前
香蕉觅云应助内向秋寒采纳,获得10
12秒前
13秒前
13秒前
zyh完成签到,获得积分10
13秒前
13秒前
小马甲应助Anxinxin采纳,获得10
13秒前
ww发布了新的文献求助10
13秒前
这小猪真帅完成签到,获得积分10
14秒前
Hulda完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794