TSD-Depth: Using transformers and self-distilling for self-supervised indoor depth estimation

计算机科学 推论 人工智能 变压器 编码器 单眼 融合机制 模式识别(心理学) 计算机工程 算法 融合 语言学 哲学 物理 量子力学 电压 脂质双层融合 操作系统
作者
Chen Lv,Chenggong Han,Junhui Chen,Deqiang Cheng,Jiansheng Qian
出处
期刊:Optik [Elsevier]
卷期号:288: 171219-171219 被引量:2
标识
DOI:10.1016/j.ijleo.2023.171219
摘要

Supervised monocular depth estimation has always been one of the most important tasks in computer vision. With the convolution module as a basic operator, the U-shaped network architecture has become the de facto standard and has achieved tremendous success. However, due to the limited receptive field of the convolution operation, the CNNs are generally inferior in explicitly modeling the long-range dependencies. Originally proposed for natural language processing, the transformers are designed for performing sequence-to-sequence predictions based on global self-attention mechanism. Therefore, the transformers can capture long-range dependencies. However, they have limited localization abilities due to insufficient low-level details. In this work, we propose a TSD-Depth model, which merits both the transformers and the CNNs, as a strong alternative for self-supervised monocular depth estimation. The proposed model simultaneously extracts the global contextual information and local spatial detail features. Furthermore, by designing the hybrid encoder connection method and proper-sized transformer module, the global and local information can more effectively interact. In addition, a local multi-scale fusion block is first proposed to refine the fine-grained details. More importantly, the knowledge is learned by using self-distillation to skip the multi-scale fusion block concatenated with the encoder at the inference time, computed only during the training process for minimal overhead. The experimental results on NYU-v2 and ScanNet datasets show that the proposed TSD-Depth achieves the best performance as compared to the previous state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助www采纳,获得10
1秒前
雨过天晴完成签到,获得积分10
1秒前
平淡的翅膀完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
小二郎应助YUKIii采纳,获得10
5秒前
syyyao完成签到,获得积分20
6秒前
6秒前
王夕夕发布了新的文献求助10
7秒前
8秒前
zzzz完成签到 ,获得积分10
10秒前
陈尹蓝发布了新的文献求助10
11秒前
11秒前
七七完成签到 ,获得积分10
13秒前
安安安安发布了新的文献求助10
13秒前
斯文败类应助瘦瘦采纳,获得10
14秒前
华仔应助零度采纳,获得10
15秒前
16秒前
可爱的函函应助Missyang采纳,获得10
20秒前
开开发布了新的文献求助10
21秒前
yrp发布了新的文献求助10
21秒前
木九发布了新的文献求助10
21秒前
啊啊啊啊啊叶完成签到 ,获得积分10
22秒前
尊敬的垣完成签到,获得积分10
24秒前
24秒前
27秒前
27秒前
麦麦脆汁鸡完成签到,获得积分10
28秒前
黄可以发布了新的文献求助10
30秒前
英姑应助木九采纳,获得10
30秒前
31秒前
MikL完成签到,获得积分10
33秒前
34秒前
37秒前
尊敬的垣发布了新的文献求助10
38秒前
39秒前
39秒前
yiyayiyayouhhh完成签到,获得积分20
41秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267700
求助须知:如何正确求助?哪些是违规求助? 2907116
关于积分的说明 8340741
捐赠科研通 2577863
什么是DOI,文献DOI怎么找? 1401249
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 634008