Tolerance for Growing Errors of Observations as a Measure Describing Global Robustness of Msplit Estimation and Providing New Information on Other Methods

离群值 稳健性(进化) 计算机科学 估计 数据挖掘 算法 人工智能 工程类 生物化学 系统工程 基因 化学
作者
Robert Duchnowski,Patrycja Wyszkowska
出处
期刊:Journal of Surveying Engineering-asce [American Society of Civil Engineers]
卷期号:149 (4) 被引量:6
标识
DOI:10.1061/jsued2.sueng-1451
摘要

Msplit estimation is a modern estimation method that has found various applications in processing geodetic data. Its basic variants were not meant to be robust against outliers; however, the practical applications showed that the method could be used in such a context. Therefore, there is a need to describe the robustness of different Msplit estimation variants. The paper uses the global breakdown point in an extended interval (GBdP-e) but also introduces the tolerance for growing errors of observations (TGE) to perform such an examination. It presents such measures obtained for the absolute Msplit estimation and robust Msplit estimation variants, which have not been shown before. The results prove that the absolute Msplit estimation predominates the squared Msplit estimation in such a context. Furthermore, the robust variants are much less sensitive to outliers than both basic variants mentioned. TGE not only describes how the method tolerates outliers but could also be applied to assume the most appropriate values of the steering parameters, which seems essential. The paper shows the theoretical relationship between basic Msplit estimation variants and respective M-estimation methods. It is a basis for introducing and deriving GBdP-e and also TGE for M-estimation. The paper shows that both measures are equivalent in the case of M-estimation. TGE could provide information about that estimation type's sensitivity to growing errors of observations (also robustness to outliers) that is unavailable by applying other measures, including classical breakdown points, influence functions, rejection points, or mean success rate. TGE presents the robustness potential of the M-estimation variants in a rather vivid and straightforward way, even for methods not classified as robust against outliers, e.g., the least-squares estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彩云追月发布了新的文献求助10
1秒前
外向晓山发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
CZK完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
紧张的跳跳糖完成签到,获得积分10
5秒前
kiminonawa应助墨菲特采纳,获得10
6秒前
6秒前
无花果应助wjy采纳,获得10
6秒前
万能图书馆应助大气靳采纳,获得10
7秒前
YSM发布了新的文献求助10
8秒前
里特思达完成签到 ,获得积分10
8秒前
neufy发布了新的文献求助10
8秒前
白白白发布了新的文献求助10
9秒前
9秒前
可靠尔冬发布了新的文献求助10
11秒前
CodeCraft应助杨立胜采纳,获得10
11秒前
爆米花应助xiaodaiduyan采纳,获得10
12秒前
万能图书馆应助年年年年采纳,获得10
13秒前
诸葛语琴发布了新的文献求助10
14秒前
14秒前
14秒前
平淡新晴发布了新的文献求助10
14秒前
我是老大应助石榴汁的书采纳,获得10
15秒前
15秒前
英姑应助洪勇采纳,获得10
15秒前
15秒前
时间完成签到,获得积分10
17秒前
Paperduoduo完成签到,获得积分10
17秒前
美好如凡完成签到,获得积分10
17秒前
18秒前
18秒前
天天快乐应助追忆淮采纳,获得10
19秒前
陈豆豆发布了新的文献求助10
19秒前
隐形曼青应助略略略采纳,获得10
19秒前
Gonboo发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369