Quantifying surface fuels for fire modelling in temperate forests using airborne lidar and Sentinel-2: potential and limitations

环境科学 遥感 激光雷达 灌木 下层林 多光谱图像 采样(信号处理) 天蓬 气象学 计算机科学 地理 生态学 计算机视觉 生物 滤波器(信号处理) 考古
作者
Pia Labenski,Michael J. Ewald,Sebastian Schmidtlein,Faith Ann Heinsch,Fabian Ewald Fassnacht
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:295: 113711-113711 被引量:11
标识
DOI:10.1016/j.rse.2023.113711
摘要

Surface fuel information is an essential input for models of fire behaviour and fire effects. However, spatially explicit, continuous information on surface fuel loads and fuelbed depth is scarce because the collection of field data is laborious, while suitable methods for deriving estimates from remote sensing data are still at an early stage of development. Fine-scale surface fuel mapping using both passive and active remote sensing has not yet been carried out in Central European forest types, and it remains unexplored how prediction uncertainties of different fuel components affect modelled fire behaviour. This study combines very detailed airborne lidar and multispectral satellite data to extract metrics describing forest structure and composition in two forested areas in southwestern Germany. These metrics were used to predict field-sampled surface fuel components using random forest regression. Accuracies of continuous fuel load predictions were compared to accuracies that could be achieved if only forest type-specific average fuels were assigned. Results revealed that models based on remotely sensed metrics explain part of the variance in litter and fine dead woody fuels (R2=0.27-0.41), but not in coarser dead woody fuels. Estimates for herb and shrub fuels were fairly accurate (R2=0.55-0.64) but limited for the more fire-relevant fine fraction of shrub fuels (R2=0.39). Fuelbed depth was moderately well predicted based on remote sensing data (R2=0.44). Lidar-derived metrics were particularly useful for predicting understory fuels and fuelbed depth. Litter and fine woody fuel predictions were linked to canopy characteristics captured with both lidar and multispectral data and similarly accurate estimates could be obtained using average values based on forest type. We used the fine-scale surface fuel maps derived from remote sensing to predict potential surface fire behaviour in the study area and analysed the sensitivity of modelled fire behaviour to errors in the predicted loads of different surface fuel components: fire behaviour was most sensitive to errors in litter and especially shrub fuel loads, hence estimates of these components need to be improved. Overall, this study showed that statistical relationships between remotely sensed metrics describing forest composition and structure and surface fuels have some potential for estimating fuel loads in Central European forest types and should be further developed to provide starting points for realistic fire behaviour models.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Owen应助LavenDell199119采纳,获得10
4秒前
田様应助等待的谷波采纳,获得10
6秒前
qim发布了新的文献求助10
7秒前
Jasper应助可爱花生采纳,获得10
7秒前
zx完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
魔幻冷风发布了新的文献求助10
12秒前
lizishu应助小胖采纳,获得10
12秒前
科研通AI6.2应助Kkxx采纳,获得10
12秒前
lululucy发布了新的文献求助50
13秒前
YOOO发布了新的文献求助10
14秒前
打打应助MMM采纳,获得10
14秒前
英姑应助丸子采纳,获得10
14秒前
从云发布了新的文献求助10
14秒前
16秒前
看文献了完成签到,获得积分10
17秒前
20秒前
20秒前
落落洛栖完成签到 ,获得积分10
20秒前
22秒前
22秒前
JayChou发布了新的文献求助10
23秒前
bkagyin应助llly采纳,获得30
25秒前
小二郎应助MMM采纳,获得10
26秒前
26秒前
可爱花生发布了新的文献求助10
28秒前
lizishu应助小胖采纳,获得10
30秒前
大树完成签到 ,获得积分10
33秒前
35秒前
从云完成签到,获得积分20
35秒前
38秒前
41秒前
科研通AI6.2应助qim采纳,获得10
42秒前
xinxin发布了新的文献求助10
45秒前
45秒前
45秒前
科研通AI6.1应助jeers采纳,获得30
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578