Quantifying surface fuels for fire modelling in temperate forests using airborne lidar and Sentinel-2: potential and limitations

环境科学 遥感 激光雷达 灌木 下层林 多光谱图像 采样(信号处理) 天蓬 气象学 计算机科学 地理 生态学 考古 滤波器(信号处理) 计算机视觉 生物
作者
Pia Labenski,Michael J. Ewald,Sebastian Schmidtlein,Faith Ann Heinsch,Fabian Ewald Fassnacht
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:295: 113711-113711 被引量:11
标识
DOI:10.1016/j.rse.2023.113711
摘要

Surface fuel information is an essential input for models of fire behaviour and fire effects. However, spatially explicit, continuous information on surface fuel loads and fuelbed depth is scarce because the collection of field data is laborious, while suitable methods for deriving estimates from remote sensing data are still at an early stage of development. Fine-scale surface fuel mapping using both passive and active remote sensing has not yet been carried out in Central European forest types, and it remains unexplored how prediction uncertainties of different fuel components affect modelled fire behaviour. This study combines very detailed airborne lidar and multispectral satellite data to extract metrics describing forest structure and composition in two forested areas in southwestern Germany. These metrics were used to predict field-sampled surface fuel components using random forest regression. Accuracies of continuous fuel load predictions were compared to accuracies that could be achieved if only forest type-specific average fuels were assigned. Results revealed that models based on remotely sensed metrics explain part of the variance in litter and fine dead woody fuels (R2=0.27-0.41), but not in coarser dead woody fuels. Estimates for herb and shrub fuels were fairly accurate (R2=0.55-0.64) but limited for the more fire-relevant fine fraction of shrub fuels (R2=0.39). Fuelbed depth was moderately well predicted based on remote sensing data (R2=0.44). Lidar-derived metrics were particularly useful for predicting understory fuels and fuelbed depth. Litter and fine woody fuel predictions were linked to canopy characteristics captured with both lidar and multispectral data and similarly accurate estimates could be obtained using average values based on forest type. We used the fine-scale surface fuel maps derived from remote sensing to predict potential surface fire behaviour in the study area and analysed the sensitivity of modelled fire behaviour to errors in the predicted loads of different surface fuel components: fire behaviour was most sensitive to errors in litter and especially shrub fuel loads, hence estimates of these components need to be improved. Overall, this study showed that statistical relationships between remotely sensed metrics describing forest composition and structure and surface fuels have some potential for estimating fuel loads in Central European forest types and should be further developed to provide starting points for realistic fire behaviour models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
破晓发布了新的文献求助10
1秒前
Ava应助90090采纳,获得10
1秒前
靓丽的溪灵完成签到,获得积分10
2秒前
辣椒酱完成签到,获得积分10
2秒前
夏大雨发布了新的文献求助30
2秒前
苗条妙旋应助青栞采纳,获得10
2秒前
顺顺尼完成签到,获得积分10
2秒前
2秒前
晓山青发布了新的文献求助10
3秒前
now发布了新的文献求助10
3秒前
chinzz应助田国兵采纳,获得10
3秒前
Smart发布了新的文献求助10
4秒前
汪汪的小可爱完成签到,获得积分10
4秒前
4秒前
5秒前
lengrui完成签到,获得积分10
5秒前
酷波er应助Q11采纳,获得10
5秒前
菲菲儿完成签到,获得积分10
6秒前
6秒前
江思瑜完成签到,获得积分20
6秒前
7秒前
7秒前
善学以致用应助郭倩采纳,获得10
7秒前
qausyh发布了新的文献求助10
8秒前
8秒前
加肥猫完成签到,获得积分10
8秒前
9秒前
耍酷剑愁完成签到 ,获得积分10
9秒前
9秒前
江思瑜发布了新的文献求助10
9秒前
酷波er应助Magic采纳,获得10
10秒前
10秒前
CYP450发布了新的文献求助10
10秒前
P_Chem完成签到,获得积分10
11秒前
11秒前
研友_ZzReaZ完成签到,获得积分10
12秒前
SYLH应助追寻飞风采纳,获得10
12秒前
13秒前
13秒前
务实的手套完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447832
求助须知:如何正确求助?哪些是违规求助? 3043598
关于积分的说明 8995047
捐赠科研通 2732011
什么是DOI,文献DOI怎么找? 1498623
科研通“疑难数据库(出版商)”最低求助积分说明 692827
邀请新用户注册赠送积分活动 690653