已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantitative Estimation of Wheat Stripe Rust Disease Index Using Unmanned Aerial Vehicle Hyperspectral Imagery and Innovative Vegetation Indices

高光谱成像 遥感 人工智能 植被(病理学) 计算机科学 Rust(编程语言) 数学 地质学 医学 病理 程序设计语言
作者
Jie Deng,Rui Wang,Lujia Yang,Xuan Lv,Ziqian Yang,Kai Zhang,Congying Zhou,Pengju Li,Zhifang Wang,Ahsan Abdullah,Zhanhong Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:16
标识
DOI:10.1109/tgrs.2023.3292130
摘要

This study aimed to identify and assess vegetation indices (VIs) and their optimal band combinations using unmanned aerial vehicle (UAV) hyperspectral imagery for the quantitative inversion of wheat stripe rust. This would offer guidance for selecting rust-resistant phenotypes and facilitate large-scale disease monitoring using aerial and spaceborne remote sensing images. The experimental design encompassed 960 wheat varieties (strains) in agricultural fields. Hyperspectral imagery was acquired at 100m altitude during different disease stages, and disease index (DI) was investigated per plot. A custom program explored VIs with two, three, and four bands using 30 calculation methods and 3,463,790 band combinations. Regression models employed three-fold cross-validation and multilayer perceptron (MLP) algorithms, with the mean R 2 value indicating optimal index and band combinations. The results revealed that the chosen VIs were effective in inverting the DI. Selected two-band VIs included MGRVI (531, 571), with R 2 =0.746±0.01618; the optimal three-band VIs was ARI2 (531, 550±10, 640±25), with R 2 =0.755±0.00896; and the best four-band VIs was DBSI (531, 551, 750, 799), with R 2 =0.778±0.01300, which was comparable to full-band modeling (R 2 =0.775±0.01508). The models’ performance improved with an increasing number of bands in the VIs. This study demonstrated that appropriate multi-VIs modeling enhances performance compared to single-VIs modeling, e.g., six combinations of VIs achieved R 2 =0.790±0.01141. These findings underscore the potential of integrating machine learning algorithms and vegetation indices for quantifying wheat rust diseases, laying the foundation for developing airborne and spaceborne imaging sensors for large-scale wheat rust monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到 ,获得积分10
刚刚
fangfang发布了新的文献求助10
2秒前
3秒前
菜鸟完成签到 ,获得积分10
3秒前
孙_boss完成签到 ,获得积分10
4秒前
6秒前
立夏完成签到 ,获得积分10
6秒前
勤奋的蜗牛完成签到,获得积分20
7秒前
vicky完成签到 ,获得积分10
8秒前
老坛完成签到 ,获得积分10
9秒前
Harlotte完成签到 ,获得积分10
12秒前
12秒前
zkx发布了新的文献求助20
15秒前
zinc完成签到,获得积分10
21秒前
21秒前
FairyLeaf完成签到 ,获得积分10
22秒前
A.y.w完成签到,获得积分10
23秒前
beifa完成签到,获得积分10
28秒前
MSYMC完成签到,获得积分10
29秒前
英姑应助笑点低剑封采纳,获得10
31秒前
Tommy_Ali完成签到,获得积分10
32秒前
37秒前
王欣完成签到 ,获得积分10
38秒前
lwh完成签到,获得积分20
38秒前
lwh发布了新的文献求助30
41秒前
呼呼完成签到,获得积分10
44秒前
50秒前
挚智完成签到 ,获得积分10
52秒前
53秒前
Jasper应助lwh采纳,获得30
54秒前
科科完成签到 ,获得积分10
56秒前
正宗完成签到,获得积分10
1分钟前
绝世大魔王完成签到 ,获得积分10
1分钟前
vcjbbvb完成签到 ,获得积分10
1分钟前
Swater完成签到 ,获得积分10
1分钟前
天天快乐应助笑点低剑封采纳,获得10
1分钟前
Otter完成签到,获得积分0
1分钟前
bengbeng完成签到,获得积分10
1分钟前
英姑应助妮劳斯采纳,获得30
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290974
求助须知:如何正确求助?哪些是违规求助? 4442178
关于积分的说明 13829448
捐赠科研通 4325091
什么是DOI,文献DOI怎么找? 2373956
邀请新用户注册赠送积分活动 1369349
关于科研通互助平台的介绍 1333483