亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantitative Estimation of Wheat Stripe Rust Disease Index Using Unmanned Aerial Vehicle Hyperspectral Imagery and Innovative Vegetation Indices

高光谱成像 遥感 人工智能 植被(病理学) 计算机科学 Rust(编程语言) 数学 地质学 医学 病理 程序设计语言
作者
Jie Deng,Rui Wang,Lujia Yang,Xuan Lv,Ziqian Yang,Kai Zhang,Congying Zhou,Pengju Li,Zhifang Wang,Ahsan Abdullah,Zhanhong Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:16
标识
DOI:10.1109/tgrs.2023.3292130
摘要

This study aimed to identify and assess vegetation indices (VIs) and their optimal band combinations using unmanned aerial vehicle (UAV) hyperspectral imagery for the quantitative inversion of wheat stripe rust. This would offer guidance for selecting rust-resistant phenotypes and facilitate large-scale disease monitoring using aerial and spaceborne remote sensing images. The experimental design encompassed 960 wheat varieties (strains) in agricultural fields. Hyperspectral imagery was acquired at 100m altitude during different disease stages, and disease index (DI) was investigated per plot. A custom program explored VIs with two, three, and four bands using 30 calculation methods and 3,463,790 band combinations. Regression models employed three-fold cross-validation and multilayer perceptron (MLP) algorithms, with the mean R 2 value indicating optimal index and band combinations. The results revealed that the chosen VIs were effective in inverting the DI. Selected two-band VIs included MGRVI (531, 571), with R 2 =0.746±0.01618; the optimal three-band VIs was ARI2 (531, 550±10, 640±25), with R 2 =0.755±0.00896; and the best four-band VIs was DBSI (531, 551, 750, 799), with R 2 =0.778±0.01300, which was comparable to full-band modeling (R 2 =0.775±0.01508). The models’ performance improved with an increasing number of bands in the VIs. This study demonstrated that appropriate multi-VIs modeling enhances performance compared to single-VIs modeling, e.g., six combinations of VIs achieved R 2 =0.790±0.01141. These findings underscore the potential of integrating machine learning algorithms and vegetation indices for quantifying wheat rust diseases, laying the foundation for developing airborne and spaceborne imaging sensors for large-scale wheat rust monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzy发布了新的文献求助10
5秒前
悟空爱吃酥橙完成签到,获得积分10
12秒前
16秒前
自律完成签到,获得积分10
30秒前
ma121完成签到,获得积分10
59秒前
科研通AI6应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
1分钟前
1分钟前
刺1656发布了新的文献求助10
1分钟前
1分钟前
jiangmi完成签到,获得积分10
1分钟前
Sene完成签到,获得积分10
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
感动初蓝完成签到 ,获得积分10
3分钟前
橘橘橘子皮完成签到 ,获得积分10
3分钟前
3分钟前
蒙恩Maria发布了新的文献求助10
3分钟前
4分钟前
蒙恩Maria完成签到,获得积分10
4分钟前
Pattis完成签到 ,获得积分10
4分钟前
鲸鱼完成签到 ,获得积分10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
bkagyin应助科研通管家采纳,获得10
4分钟前
moaner完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
优秀的甜菜完成签到,获得积分10
5分钟前
zznzn发布了新的文献求助10
5分钟前
Hello应助zznzn采纳,获得10
5分钟前
橘笙发布了新的文献求助10
6分钟前
Ricardo完成签到 ,获得积分10
6分钟前
6分钟前
橘笙完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
andrele应助科研通管家采纳,获得10
6分钟前
SciGPT应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4912050
关于积分的说明 15134209
捐赠科研通 4829983
什么是DOI,文献DOI怎么找? 2586558
邀请新用户注册赠送积分活动 1540225
关于科研通互助平台的介绍 1498423