Quantitative Estimation of Wheat Stripe Rust Disease Index Using Unmanned Aerial Vehicle Hyperspectral Imagery and Innovative Vegetation Indices

高光谱成像 遥感 人工智能 植被(病理学) 计算机科学 Rust(编程语言) 数学 地质学 医学 病理 程序设计语言
作者
Jie Deng,Rui Wang,Lujia Yang,Xuan Lv,Ziqian Yang,Kai Zhang,Congying Zhou,Pengju Li,Zhifang Wang,Ahsan Abdullah,Zhanhong Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:16
标识
DOI:10.1109/tgrs.2023.3292130
摘要

This study aimed to identify and assess vegetation indices (VIs) and their optimal band combinations using unmanned aerial vehicle (UAV) hyperspectral imagery for the quantitative inversion of wheat stripe rust. This would offer guidance for selecting rust-resistant phenotypes and facilitate large-scale disease monitoring using aerial and spaceborne remote sensing images. The experimental design encompassed 960 wheat varieties (strains) in agricultural fields. Hyperspectral imagery was acquired at 100m altitude during different disease stages, and disease index (DI) was investigated per plot. A custom program explored VIs with two, three, and four bands using 30 calculation methods and 3,463,790 band combinations. Regression models employed three-fold cross-validation and multilayer perceptron (MLP) algorithms, with the mean R 2 value indicating optimal index and band combinations. The results revealed that the chosen VIs were effective in inverting the DI. Selected two-band VIs included MGRVI (531, 571), with R 2 =0.746±0.01618; the optimal three-band VIs was ARI2 (531, 550±10, 640±25), with R 2 =0.755±0.00896; and the best four-band VIs was DBSI (531, 551, 750, 799), with R 2 =0.778±0.01300, which was comparable to full-band modeling (R 2 =0.775±0.01508). The models’ performance improved with an increasing number of bands in the VIs. This study demonstrated that appropriate multi-VIs modeling enhances performance compared to single-VIs modeling, e.g., six combinations of VIs achieved R 2 =0.790±0.01141. These findings underscore the potential of integrating machine learning algorithms and vegetation indices for quantifying wheat rust diseases, laying the foundation for developing airborne and spaceborne imaging sensors for large-scale wheat rust monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
能干的问晴完成签到,获得积分10
3秒前
3秒前
这道题没有解完成签到,获得积分10
4秒前
木鱼浪花发布了新的文献求助10
4秒前
5秒前
5秒前
linlang完成签到,获得积分20
5秒前
1403912262完成签到,获得积分10
5秒前
Frain发布了新的文献求助10
6秒前
沉静弘文完成签到,获得积分10
6秒前
7秒前
所以是雪梨完成签到,获得积分10
8秒前
科研完成签到,获得积分10
8秒前
xio发布了新的文献求助10
9秒前
科研通AI6应助端端采纳,获得30
9秒前
wanci应助青柠味薯片采纳,获得10
9秒前
小邾完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
Dali应助wise111采纳,获得10
10秒前
大方雁露发布了新的文献求助20
10秒前
10秒前
汉堡包应助怡然羊采纳,获得10
11秒前
丰富如南完成签到,获得积分10
12秒前
春和景明完成签到,获得积分10
12秒前
凡人烦事发布了新的文献求助10
12秒前
清秀龙猫完成签到,获得积分10
13秒前
13秒前
14秒前
完美世界应助粗心的智慧采纳,获得10
14秒前
15秒前
16秒前
小透明发布了新的文献求助10
16秒前
ytc发布了新的文献求助10
17秒前
345678与发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646