Quantitative Estimation of Wheat Stripe Rust Disease Index Using Unmanned Aerial Vehicle Hyperspectral Imagery and Innovative Vegetation Indices

高光谱成像 遥感 人工智能 植被(病理学) 计算机科学 Rust(编程语言) 数学 地质学 医学 病理 程序设计语言
作者
Jie Deng,Rui Wang,Lujia Yang,Xuan Lv,Ziqian Yang,Kai Zhang,Congying Zhou,Pengju Li,Zhifang Wang,Ahsan Abdullah,Zhanhong Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:7
标识
DOI:10.1109/tgrs.2023.3292130
摘要

This study aimed to identify and assess vegetation indices (VIs) and their optimal band combinations using unmanned aerial vehicle (UAV) hyperspectral imagery for the quantitative inversion of wheat stripe rust. This would offer guidance for selecting rust-resistant phenotypes and facilitate large-scale disease monitoring using aerial and spaceborne remote sensing images. The experimental design encompassed 960 wheat varieties (strains) in agricultural fields. Hyperspectral imagery was acquired at 100m altitude during different disease stages, and disease index (DI) was investigated per plot. A custom program explored VIs with two, three, and four bands using 30 calculation methods and 3,463,790 band combinations. Regression models employed three-fold cross-validation and multilayer perceptron (MLP) algorithms, with the mean R 2 value indicating optimal index and band combinations. The results revealed that the chosen VIs were effective in inverting the DI. Selected two-band VIs included MGRVI (531, 571), with R 2 =0.746±0.01618; the optimal three-band VIs was ARI2 (531, 550±10, 640±25), with R 2 =0.755±0.00896; and the best four-band VIs was DBSI (531, 551, 750, 799), with R 2 =0.778±0.01300, which was comparable to full-band modeling (R 2 =0.775±0.01508). The models’ performance improved with an increasing number of bands in the VIs. This study demonstrated that appropriate multi-VIs modeling enhances performance compared to single-VIs modeling, e.g., six combinations of VIs achieved R 2 =0.790±0.01141. These findings underscore the potential of integrating machine learning algorithms and vegetation indices for quantifying wheat rust diseases, laying the foundation for developing airborne and spaceborne imaging sensors for large-scale wheat rust monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助bancheng采纳,获得10
刚刚
大个应助安静啤酒采纳,获得10
刚刚
axin发布了新的文献求助10
1秒前
瑞仔完成签到,获得积分10
1秒前
1秒前
2秒前
希望天下0贩的0应助kebing采纳,获得10
2秒前
2秒前
科研通AI2S应助FF采纳,获得10
4秒前
4秒前
王卫完成签到,获得积分10
6秒前
Momo发布了新的文献求助10
8秒前
raincoats发布了新的文献求助15
8秒前
岁月静好完成签到,获得积分10
10秒前
10秒前
杨杨杨完成签到,获得积分10
11秒前
红黄蓝完成签到 ,获得积分10
12秒前
zhouyan完成签到,获得积分10
16秒前
16秒前
Lucas应助Bonnie采纳,获得10
17秒前
lslslslsllss发布了新的文献求助110
17秒前
tzy完成签到,获得积分10
18秒前
清风完成签到,获得积分10
18秒前
子时过完成签到,获得积分10
19秒前
shlw完成签到,获得积分10
21秒前
11112发布了新的文献求助10
21秒前
希望天下0贩的0应助Skuld采纳,获得10
21秒前
23秒前
27秒前
个性南莲完成签到,获得积分10
29秒前
suiwuya完成签到,获得积分10
31秒前
melone完成签到,获得积分10
33秒前
ambition完成签到,获得积分10
35秒前
35秒前
伯爵的猫完成签到,获得积分10
36秒前
38秒前
沐青完成签到,获得积分10
39秒前
39秒前
yaya完成签到 ,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159739
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804374